T(III)-Microbiology-H-5A

2021

MICROBIOLOGY — HONOURS

Fifth Paper

(Group-A)

Full Marks : 50

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Question No. 1 is compulsory and answer any three questions from the rest.

1. Answer *any five* questions:

 4×5

- (a) Define ectopic recombinants and cryptic transposons.
- (b) Which experiment proved that RNA could also be the genetic material? Briefly discuss it.
- (c) How does RNase affect bacterial genome structure? How can this be demonstrated?
- (d) What is a composite transposon? Describe schematically.
- (e) Distinguish between F⁺ and Hfr mediated transfer with respect to the amount and intactness of the genetic material transferred.
- (f) Write down the differences and similarities between intergenic & intragenic suppression.
- (g) What is gene conversion? How is it different from recombination?
- (h) Differentiate between euchromatin and heterochromatin.
- (i) What is Ames test? Write down its significance.
- (j) The name Mu(bacteriophage) stands for the mutator Justify the statement.
- **2.** (a) State the biological significance of Z-DNA.
 - (b) Why does double stranded region of RNA assume A-DNA conformation?
 - (c) Differentiate between A-DNA and B-DNA.
 - (d) DNA binding proteins generally interact at the major groove—explain. 3+2+2+3
- 3. (a) Treatment of Chromatin fibre with micrococcal nucleas result in 200 bp ladder of DNA fragments. Explain the observation.
 - (b) Write down the role of histone like protein responsible for compaction of bacterial chromosome.
 - (c) What are λ dgal and λ pro? Explain. 3+3+4

Please Turn Over

- 4. (a) Draw a schematic of t-RNA molecule and use arrows to show the following:
 - (i) loops
 - (ii) stems
 - (iii) amino acid attachment site
 - (iv) anticodon
 - (v) 5'-end.
 - (b) Explain how does the mismatch repair system discriminate between the parent strand and daughter strand.
 - (c) Explain how a mutagen can interfere with DNA replication to cause a mutation. Give two examples with proper explanation. 3+3+4
- 5. (a) Briefly discuss homologous recombination.
 - (b) State the significance of chi-sites in recombination.
 - (c) Name a protein which has both protease as well as endonuclease activity. Why are these activities needed? 3+2+5
- **6.** (a) State the effect of
 - (i) nitrous acid and
 - (ii) ethidium bromide on DNA.
 - (b) What do you mean by direct reversal repair? Cite an example.
 - (c) What is the difference between mutation and polymorphism? (3+2)+3+2

 2×5

- 7. Write short notes on the following terms:
 - (a) SOS Repair
 - (b) Retrotransposons
 - (c) Specialized transduction
 - (d) IS elements
 - (e) Chargoff's rule.