T(III)-Statistics-H-5A

5×2

2021

STATISTICS — HONOURS

Fifth Paper

(Group - A)

Full Marks : 50

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Notation have their usual significance.

Unit - I

- 1. Attempt any two questions from the following :
 - (a) Suppose $R = (\rho_{ij})_{i, j=l(1)k}$ is the correlation matrix for a k-dimensional random vector. Show that $|R| \le 1$ and also interpret the case when |R| = 1.

(b) If a random vector
$$X = (X_1, X_2, ..., X_p)' \sim N_p(\mu, \Sigma)$$
, evaluate $E\left(e^{\sum_{j=i}^p X_j}\right)$

- (c) Let $X = (X_1, X_2, ..., X_p)' \sim N_p(\mu_1, I_p)$ independently of $Y = (Y_1, Y_2, ..., Y_p)' \sim N_p(\mu_2, \Sigma)$, $\Sigma > 0$. Also let $U = \sum_{k=1}^{n-1} (X - \mu_1)$ and $V = \sum_{k=1}^{n-1} (X - \mu_2)$, then prove that Var(U'V) = p.
- (d) If $(N_1, N_2, ..., N_m) \sim$ Multinomial $(n | p_1, p_2, ..., p_m)$, find the condition mean and variance of N_i , given $\sum_{i \neq i}^m N_j = c$, for $0 \le c < n$.
- 2. Attempt *any one* question from the following :
 - (a) (i) Let X, Y and Z be independent random variables having same variance. Define the random variables $W_1 = (X Z)/\sqrt{2}, W_2 = (X + Y + Z)/\sqrt{3}$ and $W_3 = (X + 2Y + Z)/\sqrt{6}$. Find the multiple correlation coefficient of W_1 on (W_2, W_3) .
 - (ii) Suppose $(X_1, X_2, ..., X_p) \sim$ Multinomial $(n \mid \pi_1, \pi_2, ..., \pi_p)$ and c_i 's are non-zero real numbers such that $\sum_{i=1}^{p} c_i \pi_{i=0}$. If $U = \sum_{i=1}^{p} c_i X_i$ and $V = \sum_{i=1}^{p} (X_i / c_i)$, verify whether two random variables U and V are linearly independent or not. 7+8

Please Turn Over

T(III)-Statistics-H-5A

- (b) (i) For any non null vector α ∈ ℝ', establish that α'X ~ N(α'μ, α'Ωα) ⇔ X ~ N_p(μ,Ω) where X is a p-dimensional random vector and Ω > 0.
 - (ii) Let $X_0, X_1, ..., X_n$ be n + 1 independent standard normal variables. Define the random variables

$$Y_j = \rho X_0 + \sqrt{(1 - \rho^2)} X_j, \ j = 1, 2, ..., n.$$

Obtain the distribution of $Y = (Y_1, Y_2, ..., Y_n)'$. Also express the partial correlation coefficient $\rho_{12\cdot 34...n}$ in terms of ρ . 7+8

Unit - II

- 3. Attempt any two questions from the following :
 - (a) Suppose in a group of *n* people selected at random from a community contains m(< n) men of which m_0 are smokers. Among (n m) women in the group there are f_0 smokers. Construct Pearsonian Chi-square test to judge whether a man is more prone to smoking habit than a woman.
 - (b) Let T_n denote the mean of *n* independent random observations having common pdf $f_{\theta}(x) = 2(\theta x)/\theta^2, 0 < x < \theta, \theta > 0.$

Applying delta method, show that $\sqrt{n} (\log T_n - \log(\theta/3)) \xrightarrow{D} N(0,1/2)$, as $n \to \infty$.

- (c) Based on *n* independent copies of $X \sim N(\mu, \sigma^2)$, obtain the large sample standard error of sample coefficient of variation.
- (d) Find the asymptotic distribution of sample median of a random sample of size *n* drawn from the distribution with pdf $f_{\theta}(x) = 2\theta^2 / x^3$, $x > \theta$, $\theta > 0$.
- 4. Attempt *any one* question from the following :
 - (a) (i) Explain the term 'convergence in distribution'. If, as $n \to \infty, X_n \xrightarrow{D} X$ and $Y_n \xrightarrow{P} Y$, prove that $X_n + Y_n \xrightarrow{D} X + Y$.
 - (ii) State the central limit theorem for a sequence of iid random variables. For a sequence $\{X_k\}_{k\geq 1}$ of independent Poisson (λ) variables prove that, as $n \to \infty$,

$$\sqrt{n}\left(\sqrt{S_n/n} - \lambda\sqrt{n/S_n}\right) \xrightarrow{D} N(0,1)$$

where $S_n = X_1 + X_2 + \dots + X_n$. (2+6)+(2+5)

- (b) (i) Based on two independent random samples of sizes n_1 and n_2 from $N(\mu_1, \sigma_1^2)$ and $N(\mu_2, \sigma_2^2)$ respectively, describe a large sample test procedure for testing the null hypothesis $H_0: \sigma_1 = \sigma_2$. If H_0 is rejected, then determine $100(1 \alpha)\%$ confidence interval for $|\sigma_1 \sigma_2|$.
 - (ii) Suppose $(X_1, X_2, ..., X_n)$ represents a random sample drawn from $N(\mu, \sigma^2)$ population. Derive the asymptotic distribution of sample *r*-th order central moment. (5+3)+7

5×2