2021

STATISTICS - HONOURS
Fifth Paper
(Group - B)
Full Marks: 50
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words
as far as practicable.

1. Answer any four questions :
(a) Compare between
(i) simple hypothesis and composite hypothesis
(ii) Type-I and Type-II error
(iii) size and level of significance of a test.
(b) Assuming suitabe probability distributions, discuss a test method for testing, whether the weekly average number of road accidents in two different cities are same or not, based on sample roadaccidents data for n_{1} and n_{2} weeks (n_{1}, n_{2} small) respectively from those two cities.
(c) Based on a random sample of size n from $\mathcal{N}\left(\mu, \sigma^{2}\right)$ population, suggest a test for testing $H_{0}: \sigma=\sigma_{0}$ (given) versus $H_{1}: \sigma>\sigma_{0}$. Also write down the power function of the test.
(d) What do you mean by an UMAU confidence set? Justify its duality with UMPU test.
(e) Develop a suitable testing rule to test whether CIBIL (Credit Information Bureau India Limited) score (y) has any dependence on the income (x), based on paired data on (y, x) from a number of debters.
(f) What do you mean by Mann-Whitney U-test? Show that the null distribution of the test statistic is exactly distribution free.
(g) Let X be a random variable with pmf f_{0} if H_{0} is true and with pmf f_{1} if H_{1} is true. The pmf values are as follows :

x	1	2	3	4	5	6
$f_{0}(x)$	0.01	0.02	0.015	0.45	0.35	0.155
$f_{1}(x)$	$0.03-0.05 \gamma$	0.005	$\gamma(0.2-\gamma)$	$0.365-0.15 \gamma$	$0.4+\gamma^{2}$	0.2

If the critical region is of the form $\{X<C\}$, find a suitable value of C where level of significance of the test is 0.05 . Also find the maximum value of the power depending on the choice of γ. Is the test unbiased at its maximum power? Give reason.
(h) If $\left\{x_{1}, \ldots, x_{m}\right\}$ and $\left\{y_{1}, \ldots, y_{n}\right\}$ be two independent samples drawn from $\mathcal{N}\left(\mu_{1}, \sigma^{2}\right)$ and $\mathcal{N}\left(\mu_{2}, \sigma^{2}\right)$ populations respectively, derive a $100(1-\alpha) \%$ confidence interval for μ_{2} / μ_{1}.

Answer any two questions from question numbers 2-5.
2. (a) Based on a random sample of size $n(>1)$ drawn from an exponential population with density

$$
f(x)=\left\{\begin{array}{cl}
\frac{1}{\theta} e^{-x / \theta} & , x>0 \\
0 & , \text { elsewhere }
\end{array}\right.
$$

$\theta>0$, find a $100(1-\alpha) \%$ confidence interval of θ.
Also find its expected length.
(b) When is a test called biased? Show that an MP or an UMP test is necessarily unbiased.
(c) Prove that the test given by the critical region $\left\{\bar{X}>\mu_{0}+\frac{\sigma}{\sqrt{n}} \tau_{\alpha}\right\}$ for testing $H_{0}: \mu=\mu_{0}$ versus $H_{1}: \mu<\mu_{0}$ is a biased one, where $X_{1}, \ldots, X_{n} \sim \operatorname{IIDN}\left(\mu, \sigma^{2}\right), \sigma:$ known and $\tau_{\alpha}:$ upper $100 \alpha \%$ point of $N(0,1)$ distribution, α being level of significance of the test. $\quad 7+5+3$
3. (a) Suppose a random sample of size n be drawn from a bivariate normal population $N_{2}\left(\mu_{1}, \mu_{2}, \sigma_{1}\right.$, $\left.\sigma_{2}, \rho\right)$. Discuss how you can get an exact (and not an asymptotic) test for testing $H_{0}=\frac{\sigma_{2}}{\sigma_{1}}=\delta_{0}$ against $H_{1}=\frac{\sigma_{2}}{\sigma_{1}} \neq \delta_{0}$
(b) Describe the MP size- α test based on single observation X for testing $H_{0}: X \sim N(0,1)$ against $H_{1}: X \sim$ Laplace $(0,1)$. $8+7$
4. (a) Discuss ANOVA technique for two-way classified data with $m(\geq 2)$ observations per cell under random effects model. In this context highlight the role of valid error in ANOVA technique.
(b) We know that usually expenditure of a person depends on his/her income. As a result there should be a regression of expenditure on income for a group of individuals. Suppose income (X) (in ₹) and expenditure (Y) (in ₹) are jointly normally (bivariate normal) distributed. Based on n paired readings on (X,Y), obtained from n randomly chosen individuals, develop a test procedure to test whether a person with no income, can have on an average expenditure of ₹ α_{0} (given) or not. Also discuss a $100(1-\gamma) \%$ confidence interval of the average expenditure of a person with no income.
5. (a) On the basis of a random sample of size n_{1} from $N\left(\mu_{1}, \sigma_{1}^{2}\right)$, and of a random sample of size n_{2} from $N\left(\mu_{2}, \sigma_{2}^{2}\right)$, independently, determine a test procedure through LRT for testing $H_{0}: \sigma_{1}^{2}=\sigma_{2}^{2}$ versus $H_{1}: \sigma_{1}^{2} \neq \sigma_{2}^{2}$ at level α. Also check unbiasedness of the test.
(b) Define p-value of a two-tailed test. Describe combination of tests as an application of p-values. $8+(2+5)$

