T(III)-Statistics-H/5B

2021

STATISTICS — HONOURS

Fifth Paper

(Group - B)

Full Marks : 50

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

- 1. Answer any four questions :
 - (a) Compare between
 - (i) simple hypothesis and composite hypothesis
 - (ii) Type-I and Type-II error
 - (iii) size and level of significance of a test.
 - (b) Assuming suitable probability distributions, discuss a test method for testing, whether the weekly average number of road accidents in two different cities are same or not, based on sample road-accidents data for n_1 and n_2 weeks $(n_1, n_2 \text{ small})$ respectively from those two cities.
 - (c) Based on a random sample of size *n* from $\mathcal{N}(\mu, \sigma^2)$ population, suggest a test for testing $H_0: \sigma = \sigma_0$ (given) versus $H_1: \sigma > \sigma_0$. Also write down the power function of the test.
 - (d) What do you mean by an UMAU confidence set? Justify its duality with UMPU test.
 - (e) Develop a suitable testing rule to test whether CIBIL (Credit Information Bureau India Limited) score (y) has any dependence on the income (x), based on paired data on (y, x) from a number of debters.
 - (f) What do you mean by Mann-Whitney U-test? Show that the null distribution of the test statistic is exactly distribution free.
 - (g) Let X be a random variable with pmf f_0 if H_0 is true and with pmf f_1 if H_1 is true. The pmf values are as follows :

x	1	2	3	4	5	6
$f_0(x)$	0.01	0.02	0.015	0.45	0.35	0.155
$f_1(x)$	0.03–0.05γ	0.005	γ(0.2–γ)	0.365–0.15γ	$0.4 + \gamma^2$	0.2

If the critical region is of the form $\{X \le C\}$, find a suitable value of C where level of significance of the test is 0.05. Also find the maximum value of the power depending on the choice of γ . Is the test unbiased at its maximum power? Give reason.

Please Turn Over

5×4

T(III)-Statistics-H/5B

(h) If $\{x_1, ..., x_m\}$ and $\{y_1, ..., y_n\}$ be two independent samples drawn from $\mathcal{N}(\mu_1, \sigma^2)$ and $\mathcal{N}(\mu_2, \sigma^2)$ populations respectively, derive a 100 $(1 - \alpha)$ % confidence interval for μ_2/μ_1 .

Answer any two questions from question numbers 2-5.

2. (a) Based on a random sample of size $n \ge 1$ drawn from an exponential population with density

$$f(x) = \begin{cases} \frac{1}{\theta} e^{-x/\theta} & , x > 0\\ 0 & , elsewhere \end{cases}$$

 $\theta > 0$, find a 100 $(1 - \alpha)$ % confidence interval of θ . Also find its expected length.

- (b) When is a test called biased? Show that an MP or an UMP test is necessarily unbiased.
- (c) Prove that the test given by the critical region $\left\{\overline{X} > \mu_0 + \frac{\sigma}{\sqrt{n}}\tau_\alpha\right\}$ for testing $H_0: \mu = \mu_0$ versus $H_1: \mu < \mu_0$ is a biased one, where $X_1, ..., X_n \sim \text{IIDN}(\mu, \sigma^2), \sigma$: known and τ_α : upper 100 α % point of N(0,1) distribution, α being level of significance of the test. 7+5+3
- 3. (a) Suppose a random sample of size n be drawn from a bivariate normal population N_2 (μ_1 , μ_2 , σ_1 , σ_2 , ρ). Discuss how you can get an exact (and not an asymptotic) test for testing $H_0 = \frac{\sigma_2}{\sigma_1} = \delta_0$

against $H_1 = \frac{\sigma_2}{\sigma_1} \neq \delta_0$

- (b) Describe the MP size- α test based on single observation X for testing $H_0: X \sim N(0, 1)$ against $H_1: X \sim$ Laplace (0, 1). 8+7
- 4. (a) Discuss ANOVA technique for two-way classified data with $m (\ge 2)$ observations per cell under random effects model. In this context highlight the role of valid error in ANOVA technique.
 - (b) We know that usually expenditure of a person depends on his/her income. As a result there should be a regression of expenditure on income for a group of individuals. Suppose income (X) (in ₹) and expenditure (Y) (in ₹) are jointly normally (bivariate normal) distributed. Based on *n* paired readings on (X,Y), obtained from *n* randomly chosen individuals, develop a test procedure to test whether a person with no income, can have on an average expenditure of ₹ α₀ (given) or not. Also discuss a 100 (1 γ)% confidence interval of the average expenditure of a person with no income.

8+7

- 5. (a) On the basis of a random sample of size n_1 from $N(\mu_1, \sigma_1^2)$, and of a random sample of size n_2 from $N(\mu_2, \sigma_2^2)$, independently, determine a test procedure through LRT for testing $H_0: \sigma_1^2 = \sigma_2^2$ versus $H_1: \sigma_1^2 \neq \sigma_2^2$ at level α . Also check unbiasedness of the test.
 - (b) Define p-value of a two-tailed test. Describe combination of tests as an application of p-values.

8+(2+5)