2021

STATISTICS - GENERAL

Paper : SEC-B-2

(Monte Carlo Methods)

Full Marks : 80

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Group - A

Answer any fifteen questions

1. What is Pseudo Random Number Generator (PRNG)?
2. State the Inverse Transform Method for generating random variates.
3. Describe a process of generating a random variable such that $p_{1}=0.25$ and $p_{2}=0.75$, where $p_{i}=\operatorname{Pr}(X=i), i=1,2$.
4. How will you simulate n Bernoulli variables with parameter p ?
5. Generate a random variable with p.d.f. $f(x)= \begin{cases}2 x & \text { if } 0 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}$
6. Generate a random variable with uniform p.d.f. $f(x)=\left\{\begin{array}{cc}\frac{1}{b-a} & \text { if } a \leq x \leq b \\ 0 & \text { otherwise . }\end{array}\right.$
7. Describe a method of evaluating the following integral by Monte Carlo Method :

$$
\int_{0}^{1} e^{x} d x
$$

8. Describe a method of generating a random variable with distribution function $F(x)=x^{n}, 0 \leq x \leq 1$.
9. Mention any two desirable properties of a good random number generator.
10. Given a random observation from $N(0,1)$, how can you generate an observation from $N\left(5,2^{2}\right)$?
11. What do you mean by the period length of a random number generator?
12. Suppose you are given a random observation from a standard normal distribution. How do you generate one observation from a χ^{2} distribution with 1 degree of freedom?
13. Suppose you are given a random observation from $N\left(\mu, \sigma^{2}\right)$. How can you generate an observation from a log-normal distribution with parameters μ and σ^{2} ?
14. A number U is generated at random from the interval [0,1$]$. Write down the distribution function of $X=U^{2}$.
15. Why are computer generated random numbers called pseudorandom numbers?
16. Why the initial seed x_{0} must not be equal to 0 or m in a multiplicative congruential generator $x_{i+1}=a x_{i} \bmod m, i \geq 0$?
17. Consider the random number generator $x_{n}=5 x_{n-1} \bmod 2^{5}$ with $x_{0}=2$. After how many numbers, the seed x_{0} will appear again?
18. Given a random observation 0.78 from $U(0,1)$, simulate an observation from the distribution having p.d.f. $f(x)=e^{-x} ; x>0$.
19. Consider a biased coin that produces heads 70% of the time. Given a random observation 0.63 from $U(0,1)$, what would be the likely outcome in a single toss of the coin?
20. Suppose you are given a biased six faced die, where the probability of obtaining any of the faces $1,2, \ldots, 5$ are equally likely and 6 appears with probability 0.5 . Given one observation from $U(0,1)$ as 0.45 , what would be the likely outcome in a single throw of the die?

Group B

Answer any six questions
21. How will you estimate π by applying the Monte Carlo method?
22. Write a short note on Importance Sampling.
23. Describe a process of generating n random variables from an exponential distribution with mean λ.
24. Describe a method for generating a geometric random variable X with parameter p.
25. Describe the Box-Muller method for generating standard normal variate.
26. Discuss how you will find expectation of a random variable $X \sim \operatorname{Beta}(1,4)$ by Monte Carlo method.
27. How can you generate a sequence of pseudorandom numbers using the linear congruential generators?
28. Describe a method to simulate the roll of a fair die.

Group C

Answer any two questions

29. Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d. random variables following exponential distribution with mean $1 / \mu$. Define $Y_{1}=\min \left\{X_{1}, \ldots, X_{n}\right\}$ and $Y_{n}=\max \left\{X_{1}, \ldots, X_{n}\right\}$. Generate Y_{1} and Y_{n} by using the Monte Carlo method.
30. Describe with an algorithm how you will simulate a random permutation of $1,2, \ldots, n$.
31. Let g be a function defined on $[-2,2]$ given by

$$
g(x)=\frac{8}{7}+\frac{118}{63} x^{2}-\frac{74}{63} x^{4}+\frac{10}{63} x^{6} .
$$

Find c such that $f(x)=c . g(x)$ is a probability density function. Describe a method of generating a sample from f.

