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Chapter 4

Permutation Groups

Almost without hyperbole, one can say that no branch of modern mathematics is
now presented in the way as it was actually generated and group theory is no ex-
ception. Indeed, the genesis of group theory actually began with the permutation
group, as it is called nowadays, towards analyzing and describing the relations be-
tween the roots of a polynomial equation. It was Cauchy (1815) who first made the
systematic study of permutation group, irrespective of its reference to some poly-
nomial equations. Actually it was the genius of Galois, who first (1829) understood
them! to be a special case of a more general phenomenon and stressed upon the ne-
cessity of studying the underlying abstract structure and thus the theory of (finite)

groups came into being.

4.1 Permutation group

Right from our school days we know that a permutation of n different elements is
nothing but an arrangement of those elements in any order. For example, if we
consider three elements z,, z,, Z;, then we can arrange them in any of the following

SIX manners only.

T,T,T, Z,T,T; T3Z; Ty T1T3T T3, LT, T,

\\ -
Tt is o pity that his epoch making works came to light only in 1846, almost 14 years after

his death., Qalois failed twice at the entrance examination of the Ecole Polytechnique. Twice he
once through Cauchy and then through Fourier, both

tried to communicate his works personally, . L . .
of whom, showed no interest: he then formally submitted it for publication to the Académie, which
b}

Poj . . .
01sson rejected as incomprehensible!
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s of @,,&,,T; is called a permutation. Note that each

z;ura,ngenlent
Each of these bed as a bijective mapping from the set g _

of these arra.ngements can be descri
{,,T,, Ty} ONLO itself as shown below:

T, DT, | T, T, | T T
T, = Ty | Ty — L3 T, .70}

x, — Ty

Ty Ty | Ty =Ty | Ty — T,
Ty, = Ty | Ty > Ty | Ty =z, | T3 = T,

T, =T | T T

:1:3—->.'1:1 I, =T,

We now extend this idea over an arbitrary set of elements.

o ﬁ/nition 4.1.1. Let A be a nonemgtl_sgy. A permutation of A is a bijective

W :ﬁmtlon 4.1.2. A group (G, %) is called a permutation group on a nonempty

set A if the elements of G are some permutations of A and the operation * is the

e —

composition of two mappings.

Jéxample 4.1.3. Let X be a nonempty set and let S, be the set of all bijective
functions of X onto itself. Then (S,,0) is a group as we have shown in Example
3.1.9, where o is the composition of functions. Hence (.5, ,0) is a permutation group.

Let us now consider permutation of a finite set. Suppose for any positive integer
n, I, denotes the finite set {1,2,3,...,n}. For example, I3 = {1,2,3}. Now any
permutation on I, is a bijective function on {1,2,3, ... ,n}. The set of all permuta-
tions on I, forms a group under the binary operation ‘composition of two functions'.
This group is called the symmetmc group on n elements and is denoted by Sn.
It is easy to see thatu Let o € S;. Generally we demonstrate ¢ in the
following way: <

1 — a(l)
2 — «a(2)

@ i 3—a(3) W
n— a(n)

where (i) denotes the j Image of 7 under «, for all 7 = 1,2,...,n. But it is sometimes
con
venient o describe this permutation by means of the followmg notational device:

a=(1 2 33 s n) S

o(l) o(2) a3) ... a(n)
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41, PERMUTATION GROUP 129

This notation is due to Cauchy and is called the two-row notation. In the upper
mll the elemets of I, and in the lower row under cach element i € In,
we write the image of the element, i.e., (). For example, if n = 3 and «a is a
permutation on I3 defined by a(1) = 2,0(2) = 3,(3) = 1, then using the two-row

notation we can write
1 2 3
a = .
2 31

The two-row notation of permutations is quite convenient while doing computations,
such as determining the composition of permutations. Let

a:( 1 2 ... and § = 1 2 ... n

a(l) af2) ... a(n) ~\BQ) B2 ... BMm))

Now the composition « o § is also a permutation on I, defined by (o o B)(i) =
'a(ﬂ(z')) for all 7 € I,. Then,

wod = (1 2 ... n)o(l 2 ... n)
a(l) «(2) ... a(n) p(1) B2 ... Bn))
i ( 1 2 ... =n ) e

o(B(V) «(8@) ... o(sm)

Let us consider the example with n = 6. Let o and 8 be two permutations on g

defined by
1 2 3 4 5 6
o =
1 3 46 2 5

- ﬁ_(123456) v

6 5 3 1 2 4
Let us compute « o 3 where ao 3 : Is — I defined by (o B)(7) = a(B(7)) for all
1 € I, Thus,

(o B)(1) = a(B(1)) = (6) =5
wod)@ —atp@) =a®) =2
and so on. From the above, it is clear that, when determining (c o B)(1)(say), we

start with 2 and finish with ¢, and read as follows : 1 goes to 6 (under 3), 6 goes to

5 (under o) and so 1 goes to 5 (under a0 8). We can exhibit thils in the following
fOI‘m:
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ﬂ o OZOIB 5

1565 1—
2ol

2 h59%0 225
B o o aﬁ4

3534 3
g
1 B151 425
. of
55293 5253
65456 6%

Thus,

1 23 45 6
“f=l5 941356}
ample 4.1.4. In this example we consider the group S3, the elements of this

group being all the permutations on I3 = {1,2,3}. As the number of bijective

functions of I3 onto itself is 3! = 6, we have |S3] = 6. We now enlist below the
permutations on 3 = {1,2, 3}.

\ (123 _ (123 (123
§%%§' ’ C.23) : (23 1) P31 2
12 3 12 3 1 2 3

"“lis2) °Tly g 5] o= 3 2 1

We now show some computations regarding the compOS1t10n

ments of Sj.
l 2 -3 1 2 3 1 2 3
Yod = o
1 3 2 2 1 3 3 1 2

or product of ele-

The following calculation of d o v reveals an important fact.

{1 ' 3) ‘
§ S 2 3 ) 1 2 3 e 1 2 3 i - o
2 1 3 1 3 2 2 3 1
We find that Yo d % §oy. Follo
We leave it for the reader to fill

wing is the incomplete Cayley table of this group-
it up.
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°cle a f v §
cle a B v §
a | o ﬁ e
3 BB e «
T e [
0|4 a e
?:) ohe e
The group S3 1s & noncommutative group of order 6.

In the following theorem, we prove this for any symmetric group Sn,n > 3.

éorem 4.1.5. If n 1s a positive integer such that n > 3, then the symmetric
‘j% group Sp 18 & noncommutative group.

Proof. Let n > 3. Let a, 8 € S, be defined by

a(l) =2,a(2) =1, and a(z) = z for all z # 1,2;
B(1).=3,8(3) =1, and B(z) =  for all  # 1,3.

Then,
1 2 3 4 nand,@—1234 n
“\21 3 4 " \321 4 n
Now,
1 2 3 4 n
aef=13 1 94 n
and ‘ :
1 234 ... n
foa= 2314 ... mn
Thus (oo B)(1) = 3 # 2 = (B0 a)(1). Hence c off# fBoa and so Sy, is noncommu-

tative, for n > 3. N

Let us now introduee a convention towards simplifying the two-row notation of

a permutation. Consider the permutation
1 2 3 ... N )
*“\a@ a@ a@ - o)
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: L
2 ] d
' b on the column .. For example, let o = 4
If a(i) = i, then we drop the colt )

o 1432.

2 4 _
Heie ”(1) =1 and a(3) — 3. So we denote o by (4 2). Hence if Wwe Wity

134 1 ‘mutation o = 12345
o= (4 ; 3) € S5, then we mean the permuta “le 21335/

'lénition 4.1.6. A permutation ¢ on I, = {1,2,...,n} is called aﬁw 2
cycle of length & if there exist distinct elements ¢,,%,,... y, in Iy such that

o(4,) = iy,0(1,) = ig,0(15) =14,...,0(y) =1,

o(i,) =1, and o(z) =z for all z € In \ {3,,%,,...,1, }.

A k-cycle with k£ = 2 is called a transposition.

If a permutation o on I, is a k-cycle, we shall denote it by (3, i, ... i,). We shall
refer to this new notation as cycle notation. For example,

U=(12 3 4 56)
3 52 41 6
is a permutation on Jg = {1,2,3,4,5,6} such that:
| 0(1) =3, 0(3) =2, 0(2) =5, 9(5) =1, o(4) = 4, o(6) = 6.
Hence, o is a 4-cycle and we denote o by (1325). Observe that:
(1325) = (3251) = (2513) = (5132).

The term cycle regarding the cyclic notation may be understood in the light of the

. following diagram (Fig. 10). We show the diagram for the above permutation o.

or, c:1 233525531
Consider now the permutation o = ; i pl . For this permutation a(1) =
. 1 2
3,(3) = 1 whereas a(2) = 4, of

4) = 2. Hence « is not a k-cycle.
Since k-

cycles are nothing but special type of permutations, they can be com

posed, i.e., multiplied just like any two permutations. Consider the cycles o = (24 3)
and § = (1265). Then -

g:2 3453 2andcr(:1;)=a:whena:9é2,4,33.nd,

Scanned with CamScanner




' ,1. PERMUTATION GROUP
133

w

O«

5 Fig. 10

d:1 222655 1 and §(z) = z when z # 1,2, 5, 6.

In other words, we can look upon ¢ and § as mappings in the following manner:

234 1—2

4—3 26

o 3—2 8 6—5
T : 5—1

when z # 24,3 T T

when z # 1,2,5,6

Again viewed as permutations in a two-row notation, o and J are as follows:
1 2 3 4 5 6\ {1 2 3 4 5 6
g = and 0 = .
1 42 3 5 6 2 6 3 415

s (L2345
— (o] — -
90=2a 46 2315

It is worth notiéing that while calculating a8, we first consider the image of 6 on
the elements of I and then on that image set, we further consider the image of o.
Hence oo : 1 —6—> 9 %y 4 . Notice that under od,

Now

1345322262521

Hence in this case ¢ is a 5-cycle.

But in general, product of two cycles may not be a cycle. To show this we
and § = (324) from Sg. Then

| 1 23456
o§=000=|, 4 936 5

consider the product of o = (56)

e g T R S - A eI L S ) SRS e g, SR
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134 CHAPTER 4. PERMUTATION GROUPS

is not a cycle.

Using the cycle notation we now write the elements of S3 as follows:

12 3 (1 23\ _,,
62(123)2(1) @={y 3 1) =129
1 2 3 _ (1 23 — (93
'ﬁ=(312>=(132) =1y 3 o (23)
12 3\ (1 23 ~ (13
52(2 1 3)_(12) 7=13 2 1) =19

Hence, ‘
| Ss = {e, (12),(13),(23),(123), (132)}

consists of one 1-cycle, three 2-cycles and two 3-cycles.
Note that the identity permutation e in the above example could have beey
represented as (2) or (3) also.

AJefinition 4.1.7. Two cycles (i, 4, ...1,) and (j, 5, ... J,) of Sy, are said to be
disjoint if {i,,i,,...,4,} N {j,,4,-..,5.} = 0.

Example 4.1.8. The cycles (2435) and (168) are disjoint cycles, whereas the
cycles (4532) and (138) are not disjoint.

In the Example 4.1.8 above, we have considered two disjoint cycles o = (2435)
and = (168). Now let us work out their compositions.

of = (2435)(168) =

Ba = (168)(2435) =

(=T S N
~N 3 3 -3
= o0 = 0o

6
8
6
8

KOOI SE
ol ov w
W W
D Gl N on

Hence o' = Ba. Indeed, we have the following general result in the form of 8

/@heorem. -
Morem 4.1.9. Let o and B be any two disjoint cycles in S,. Then, off =P

Proof. Let & = (i, 4, ...4,) and 8 = (4172 ---7,) be two disjoint cycles. We shoW
that (af)(z) = (Ba)(z) for all z € I,. Now, .
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A gy = da
ly = i, Jo = Js
a by =4, B Jier = I
i, — 1, Ty = I
Yy —y y—y
Whenyﬁ'{(il,iz,...,it} when y &€ {4,,75,- -1 7%}
Suppose & is neither 4,,4,,...,4, nor Ji1J2s- -, J,- Then a(z) = z and B(z) = =.

Hence

(aB)(2) = &(B()) = a(z) = 7 and (Ba)(z) = B(al@)) = Ble) = =
Suppose now & is one of 4,,%,,...,4,. Hence z ¢ {71172r-+-+J.}- Then B(z) = =
and a(z) is one of 4,4,,...,4,. Hence (aB)(z) = a(ﬁ(a:)) = a(z) and (Ba)(z) =

ﬂ(a(m)) = O!(:E) (since CX(.’B) ¢ {jujz: s ’jk})' Slm11arly, if z is one ijl,jg, ‘e :jk:a
then ¢ {11,4,-.-,%;} and as above we can show that (e8)(z) = B(z) = (Ba)(z).
So we find that (af)(z) = (Be)(z) for all z € I,,. Consequently, af = Ba. O

Next we consider the following permutation from Sy.

g (1 234567809
5821436739

Under this permutation

Col) =5 |
a’(1) = a(a(1)) = a(5) = 4
a?(1) = a(a?(1)) = a(4) = 1.

So we find that 3 is the smallest positive integer such that a®(1) = 1. Now we define
o, : Iy ={1,2,3...,9} — Iy by

(1) = a(l) =5
a1(5) = a?(1) =4
o1(4) =a3(1) =1
and a1(z) =z for all z € I \ {1, 4, 5}.

Hence o, € S and «, is a cycle given by 1 =+ 5 = 4 — 1. So we find that

@ = (154) and o, € Sp.
Now 2 ¢ {a(1),02(1),0%(1)} = {1,5,4}. Starting with 2, we find that
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Hence 5 is the smallest positive integer such that a5(2) = 2.
Now we define a, : Iy = {1,2,3...,9} = Iy by

012(2) = a(2) =8
o(8) =a?(2) =17
aa(T) =a?(2) =6
aa(6) = a*(2) =3
012(3) = a5(2) =2
and ap(z) = z for all z € Iy {2, 8, 7, 6, 3}.

Clearly, a, € Sy and under a,
2282726232

and £ — z for all 7 € Iy \ {2, 8, 7, 6, 3}. Hence oy defines a cycle (28763).

Note that o, = (154) and a, = (28763) are disjoint and hence o, a, = @, ;.
Now 9 ¢ {1,5,4} U{2,8,7,6,3}. Starting with 9 we obtain c(9) = 9. Hence 1 is the
smallest positive integer such that o!(9) = 9. Now define o, : Iy — Iy by

a,(9) =a(9) =9
and o4 (z) = z for all z € Iy \ {9}.

1 Note that o, € Sg and under o3,

| : ' 9 =9

and £ — 7 for all z € Iy \ {9}. Consequently, c, is the identity permutation. Now
it is easy to see that

a=qaoa,0, =00, =(154)(28763)(9) = (154)(28763).
Hence « is a product of disjoint cycles.

* We can apply the above process for any permutation « on I,, for any intef:’;ér
; ~n 2 2 and show that o can be expressed as a product of disjoint cycles.
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(@ :
0/' eorem 4.1.10. Any nonidentity permutation a € Sp(

. _ n > 2) can be ezpressed
5 o product of disjoint cycles, where eqch, cycle is of leng .

th > 2.
proof. Let o:beapermutation on S, n > 2. We begin by considering 1, (1), o2(1)
until we find the smallest positive integer r such that a"(1)

= 1. This gives us a
r-cycle, say @, 8O that &

4 =(1al) Q1) ...a71)).

Let i be the smallest integer in I,,, that does not appear in «,. -Then we consider

N A2(7 .
a(i), @ (), ... so on, until we come across the smallest positive integer s such that
(i) = 1. Evidently this gives us an s-cycle, say a,, so that:

@, = (i afi) &®(5) ...0%@)).

Before proceeding further, observe that o, and a,, as we have constructed them,
must be disjoint cycles, i.e.,

{1, a(1), a2(1), ...,a"(l)} N {z ali), 62(3), ..., e (i)} = 0.

Indeed, otherwise, if aP(i) = a*(1) for some p, k (1<p<sandl1<k<r), then
we must have o?*1(i) = a(af(i)) = a(a¥(1)) = o#*1(1) and so on, which in turn
implies that o?t?(:) = a**t(1) for t = 1,2,... Now there exists some # such that
p+t=s. Hence for this ¢, i = o**1(i) = o?Tt1(i) = oF*t**1(1). This implies that

i appears in a1, a contradiction to the choice of . Now if
{1,0(1), 2(1), ...,a" M} U {3, ali), (), -..,0"@) } # I,

then we consider the smallest member of I, not appearing in the left hand side
~ .union above and continue the same process as before to construct cycle o,. Since
I, is finite, the aforesaid process must terminate after a finite number of steps, with
some cycle, say, o, . From the definition of the cycles &, a,,...,a,,, it now follows

thata =a, 0a,0...00,. ’ U
Next we consider a cycle o = (2435) on Sg. Under this permutation we have
a:2—-54—33—25—2

and ¢ — g whenever z € Jg~{2,4,3,5}. Now consider the 2-cycles (25), (23), (24).
Let o, = (25), @, = (23) and oy = (24)- Consider the product

o, = (25)(23)(24).

Under this product,
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138 CHAPTER 4. PERMUTATION GROUPg
9 23y 4 —ai> 4 —El—) 4
420 2203 4,3
g %3 %20 5

when z # 2, 3,4, 9.

Then,
oo, 12 —4—+3—=5,—2andz — z for the rest.

Consequently, o, a,a, = (2435).

Tn this way we can show that any cycle (i,,%,,...,,), k > 3 can be expressed
as (1, z'k)(z' i,_,) ... (4, 1,). Indeed we may have the following theorem.

® ﬁorem 4.1.11. Any cycle of length > 2 is either a tmnsposztzon (i.e., 2-cycle)
or can be expressed as a product of transpositions.

©

@ ‘heorem 4.1.12. Any nonidentity permutation of Sy (n > 2) is either a. tmnspo-

sition or can be ezpressed as a product of tmnsposztzons

Combining the last two theorems we state the followmg

~/ﬁinition 4.1.13. A permutation o € S, is called an even permutation if @ -
can be expressed as a product of an even number of 2-c;aes and a permutation: .
a € Sy, is called an odd permutation if o is either a 2-cycle or can be expressed
as a product of an odd number of 2-cycles. The set of all even permutations in Sn

forms a group. This group is called the alternating group and is denoted by Ap.

Note that according to the above definition the identity permutation is an even
permutation. (why?) We now merely state the following theorem, which is a very
important property of a permutation. '

é;gyeorem 4.1.14. Any permutation in Sy, is either an odd permutation or an €ve®
permutation, but never both.

Example 4.1.15. Let

_(t 2345678\
8 5637421,
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1
2 .
Here a(1) = 8,0%(1) = (8) = 1, Hence 1 4§, 14 fi .
Now 3 ¢ {1, 8} and . elines a 2-cycle, viz., (18).
Of(3) = 6,0!2(3) = a(ﬁ) —= 4, 03(3)
imply that 3 = 6 — 4 — 3 formg 5 3.
Now 5 ¢ {1,8} U {3,6,4} and

‘ = a(4) =3
cycle (364).

a(5) =7, a?(5) = a(7) = 2,03(5) = a(2) =5

whence 5 - 7 = 2 5 5 defines a 3-
Now (364) = (34)(36) and (572) = (
is.a product of five 2-

cycle (572). Hence a = (1 8).(364)(.572).

52)(57). Hence a = (18)(34)(36)(5 2)(57)
cycles and so « is an odd permutation.

We have defined earlier, the notion of the ordey of an element in a group. In
that light, let us examine the order of varioys elements of the permutation group

Sp. Since this group is finite, the order of any element of this group must also be
finite. Let o € Sy. To find the order of «, we need to compute o, a?, 0, ..., until
we find the first positive integer n, such that o™ becomes the identity permutation -

e. For example, let us consider the group

S3 = {8, (1 2), (1 3)3 (2 3): (1 2 3)7 (1 32)}‘

t ~ Note that (123)0(123) = (132) # e and (123)0(123)0(123) = ¢, whence order
; of (123) is 3. In a similar manner, we may show that the order of (132) is also 3.
; | .t - Let us now consider (12) € S5. Observe that, (12) o (12) = e whence order of
e (1 2) is 2. Similarly, order of (13) as well as of (23) is 2. So we see that the order of

2-cycles in S5 iS,Q, and the order of 3-cycles in S is 3. Indeed, we have the following
- |& 7)general result.

R ot o

{@eorem 4.1.16. Let n > 2 'dnd’ o-€ Sy be a cycle. Then o is a k-cycle if and
i - only if order of o is k. S

;'Proof, Let o be a k-cycle in S, n > 2. Let 0 = (a, a, ...a,). Then o(a) = a for
dlla g {al,az,_,,,ak}. 'Now at(a,) = a;,, forall 1 < i < k and o*(a,) = a,.
- Consider a;,1 < i < n. Now o*7%a,) = ag, 0" **(a,) = a,. This implies that

3 Uk'H‘i(ai) =gq, for all 1 <! < k and so 0¥(a;) = a;. Thus, 6¥(a) = a for all and
80 0F = ¢, whence o(c) | k. Suppose o(c’r) =tandt <k. Thena, =0'(q,) =a,,,, a
Contradiction, since a,,, # a,. Hence t =k, Le., o(o) = k.

» Conversely, suppose that o(c) = k. Suppose o is a t-cycle. Then as before we
¢an show that o(g) = ¢. This implies that k = t;i.e., 0 is a k-cycle. O
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- Observe that, for a permutation a € Sy, which is not a cycle itself, direey
process to find the smallest positive integer n, for which o" = e, may be very
tedious task. However, we can decompose o into disjoint cycles, and then compyg,
the order of each of them, which is nothing but the length of the respective cycleg
(by Theorem 4.1.16), and then use them to find the order of o The next result

throw some light in this regard.

‘heorem 4.1.17. Leta € S,, 7 > 2 and 0 = 7, 00,0...00, be a product of disjoip

cycles. Suppose o(c,) =n,,i=1,2,...,k. Then o(c) = lem(n,,ny,...,n,).
Proof. Let o(0) =t and m = lem(n,,n,,...,n,). Now m = n,r; for some r; ¢ N,
for each ¢ = 1,2,..., k. Since disjoint cycles commute, 0™ = 07" 007" 0...00™ =

opiTt 0 g™ o ... 0 o}k = e since o(g;) = n; for each 4. Thus, |m. In order to
show that m |1, it suffices to show that n, |1, ie., of = e, for each i = 1,2,.., f,
Since disjoint cycles commute, 0 = 0,00, 00,0-+-00,_; 00,,,0---00,. Le
a € Ir. If 0,(a) = a, then of(a) = a. Suppose o, moves a. Then as o,’s are disjoint,
g;(a) = a for all j # 4. Hence ol(a) = a for all j,j # i. Thus, a = o%(a) =
(0foojogio---00t ool o---00!)(a)=ot(a). Hence ot = e. As this is true for
each71=1,2,...,k, the theorem follows.
O

Before we end this section and plunge into exercises, let us discuss in brief a
mind-boggling problem that comes under the purview of the so-called recreational
mathematics. Known as the Fifteen Puzzle, this interesting game was conceive¢®
by Sam Loyd in 1878, and soon it became \;ery ‘popular. Even today one may find
this game, which consists of fifteen square blocks, numbered from 1 to 15, contained
within a square frame, with the sixteenth place empty (usually at the right-hand.
bottom corner). The blocks can be slided only horizontally and vertically via the
empty slot. One may shuffle the blocks arbitrarily, and the game is to rearrange

‘them back to the initial regular position.

1273
51678
9 (101112
13 [ 14 | 15

Now suppose we get hold of one such toy which is set at the initial regula’

position. We deliberately erase the numbers 14 and 15 from the respective blocks
and then imprint there 15 and 14 respectively.
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