ASUTOSH COLLEGE

Department of Mathematics

ASSIGNMENT

Subject Name: Mathematics (Honours)

Semester: 4th semester

Name of Teacher: Dr. Nandan Ghosh

Name of Topic. Uniform Convergence of Sequence and Series of functions

- 1. Show that the sequence $\{n \log(1 + \frac{x}{n})\}$ is uniformly convergent on any closed bounded interval of form [0,b] but the convergence is not uniform on $[0,\infty)$.
- 2. Consider $f_n(x) = \frac{n^{\alpha}x}{1+x^2n^{\beta}}$ with $\beta > \alpha \ge 0$. Find the relation between α and β for which the sequence converges uniformly on [0,1].
- 3. Prove or disprove: If $\{f_n\}$ and $\{g_n\}$ converges uniformly on **R** then $\{f_n, g_n\}$ is also uniformly convergent on **R**.
- 4. Let { fn} be a sequence of continuous real valued functions that converges uniformly on the closed and bounded interval [a,b] and let $F_n(x) = \int_a^x fn(t)dt$, $a \le x \le b$. Show that $\{F_n\}$ converges uniformly on [a,b].
- 5. Examine the uniform convergence of the series $\sum_{0}^{\infty} \left(\frac{1}{Kx+2} \frac{1}{Kx+x+2}\right)$, $0 \le x \le 1$.
- 6. Show that the series $\sum_{n=1}^{\infty} \frac{1+n^5}{1+n^7} \left(\frac{x}{3}\right)^n$ is uniformly and absolutely convergent on [-3,3].
- 7. Evaluate $\lim_{x\to 0} \sum_{K=2}^{\infty} \frac{\cos Kx}{K(K+1)}$.
- 8. Show that the series $\sum_{n=1}^{\infty} \left(\frac{x}{x+1}\right)^n$ is uniformly convergent on [0,a], a > 0. (Use Dini's theorem)
- If { fn} be uniformly convergent sequence of functions from S to R and if g. E to R be uniformly continuous on E ⊃ f_n (S) For each n, show that the composite functional sequence {g. f_n} converges uniformly on S.
- 10. Suppose $f_n(x)$ is non zero for all x and n, converges uniformly on D and there exist a $\beta > 0$ such that $f(x) \ge \beta$ for all x in D. Show that $\{1/f_n\}$ converges uniformly to 1/f(x) on D.

Note : Date of Submission of Assignment : 22/04/2020