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LINEAR TIME-INVARIANT SYSTEMS

/Z{INTRODUCTION

In Section 1.6 we introduced and discussed a number of basic system properties. Two of
Lhesef!inearity and time invariance, play a fundamental role in signal and system analysis
for two major reasons. First, many physical processes possess these properties and thus
can be modeled as linear time-invariant (LTI) systems. In addition, LTI systems can be
analyzed in considerable detail, providing both insight into their properties and a set of
powerful tools that form the core of signal and system analysis.

A principal objective of this book is to develop an understanding of these proper-
ties and tools and to provide an introduction to several of the very important applications
in which the tools are used. In this chapter, we begin the development by deriving and
examining a fundamental and extremely useful representation for LTI systems and by in-
troducing an important class of these systems.

One of the primary reasons LTI systems are amenable to analysis is that any such

System possesses the superposition property described in Section 1.6.6. As a consequence,

if we can represent the input to an LTI system in terms of a linear combination of a set of

ba;ic signals, we can then use superposition to compute the output of the system in terms
of its responses to these basic signals. -

s we will see in the following sections, one of the important characteristics of the

unit impulse, both in discrete time and in continuous t
can be represented as linear combinations of dela
the properties of superposition and time iny
characterization of any LTI syste
representation, referred (o as the C
lution integral in continuous time,

ime, is that very general Sigm}ls
yed impulses. This fact, together wilh
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with LTI systems, Following our development of the convolution surm and the convolution
integral we usc these characterizations to examine some of the other properties of LTI sys-
tems. We then consider the class of continuous-time systems described by linear constant-
coefficient differential equations and its discrete-time counterpart, the class of systems
described by linear constant-cocfficient difference equations, We will return to examine
these two very important classes of systems on 4 number of occasions in subsequent chap-
ters. Finally, we will take another look at the continuous-time unit impulse function and
a number of other signals that are closely related to it in order to provide some additional
insight into these idealized signals and, in particular, to their use and interpretation in the
context of analyzing LTI systems.

ISCRETE-TIME LTI SYSTEMS: THE CONVOLUTION SUM

2.1.1 The Representation of Discrete-Time Signals in Terms
of Impulses

The key idea in visualizing how the discrete-time unit impulse can be used to construct
any discrete-time signal is to think of a discrete-time signal as a sequence of individual im-
pulses. To see how this intuitive picture can be turned into a mathematical representation,
consider the signal x[n] depicted in Figure 2.1(a). In the remaining parts of this figure,
we have depicted five time-shifted, scaled unit impulse sequences, where the scaling on
each impulse equals the value of x[n] at the particular instant the unit sample occurs. For

example,
1 _ A1), n=-1
x[—116[n + 1] [0. not—1"
_ [0, n=0
050 = 1 " %o

cen 1 |1 =1
x[118[n 11-10’ nel”

Therefore, the sum of the five sequences in the figure equals x[n] for =2 = n = 2. More
generally, by including additional shifted, scaled impulses, we can write
x[n] = ...+ x[-3]5[n + 3] + x[—2]6[n + 2] + x[-116[n + 1] + x[0]6[n] 2.1)
+ x{1]8[n — 1] + x(2)8n — 2] + x13)8[n = 3] + ... '

| For any value of n, only one of the terms on the right-hand side of eq. (2.1) is nonzero, and
E the scaling associated with that term is precisely x[n]. Writing this summation in a more

compact form, we have

E

xn) = > AKd[n— K 22)

k::—’l.

This corresponds to the representation of an arbitrary sequence as a linear combination of
on are x[k]. As

shifted unit impulses 8[n — k], where the weights in this linear combinati
an example, consider x[n] = u[n], the unit step. In this case, since u[k] = 0 for k<0

—— . 5
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x[~2]8{n + 2]

Ti-3-2-1 01234 g
(b)

x[~1] 8[n + 1]

L
[ ]
a9

-f; g ; 10123 4 n
()
x[1] 8[n-1)
|  -4-3-2-1 01 23 4 n
; ©
x[2] 8{n—2]

Figure 2.1 Decompoyﬂ:gqi“
discrete-time signal into 2
sum of shifted impulsés.

Scanned with CamScanner

—— e

e e g

RPN

PRI




Sec.2.1  Discrete-Time LTI Systems: The Convolution Sum 77

and u[k] = 1for k = 0, eq. (2.2) becomes
+x
uln] = 26[71 — k],
k=0

which is identical to the expression we derived in Section 1.4. [See eq. (1.67).]

Equation (2.2) is called the sifting property of the discrete-time unit impulse. Be-
cause the sequence 6[n — k] is nonzero only when k = n, the summation on the right-
hand side of eq. (2.2) “sifts” through the sequence of values x[] and preserves only the
value corresponding to k = n. In the next subsection, we will exploit this representa-

tion of discrete-time signals in order to develop the convolution-sum representation for a
discrete-time LTI system.

2.1.2 The Discrete-Time Unit Impulse Response and the Convolution-
Sum Representation of LTI Systems

The importance of the sifting property of egs. (2.1) and (2.2) lies in the fact that it repre-
sents x[n] as a superposition of scaled versions of a very simple set of elementary functions,
namely, shifted unit impulses 8[n — k], each of which is nonzero (with value 1) at a single
point in time specified by the corresponding value of k. The response of a linear system
to x[n] will be the superposition of the scaled responses of the system to each of these
shifted impulses. Moreover, the property of time invariance tells us that the responses of a
time-invariant system to the time-shifted unit impulses are simply time-shifted versions of
~one another. The convolution-sum representation for discrete-time systems that are both
linear and-time invariant results from putting these two basic facts together.

More specifically, consider the response of a linear (but possibly time-varying) ys-
tem to an arbitrary input x[n]. We can represent the input through eq. (2.2) as a linear
combination of shifted unit impulses. Let /;[n] denote the response of the linear system
to the shifted unit impulse 8[n — k]. Then, from the superposition property for a linear
system fegs. (1.123) and (1.124)], the response y[n] of the linear system to the input x[n]
in eq. (2.2) is simply the weighted linear combination of these basic responses. That is,
with the input x[n] to a linear system expressed in the form of eq. (2.2), the output y[n]
can be expressed as

+o

yinl = > x[kli[n). 2.3)

k=-—oo

Thus, according to eq. (2.3), if we know the response of a linear system to the set of
shifted unit impulses, we can construct the response to.an arbitrary input. An interpreta-
tion of eq. (2.3) is illustrated in Figure 2.2. The signal x[n] is applied as the input to a
linear system whose responses h—1[n], hg[n], and k| [n] to the signals 8[n + 1], §[n], and
8[n — 1], respectively, are depicted in Figure 2.2(b). Since x[#] can be written as a linear
combination of 8[n + 1], 6[n], and 8[n — 1], superposition alows us to write the response
to x[n] as a linear combination of the responses to the individual shifted impulses. The
individual shifted and scaled impulses that constitute x[n] are illustrated on the left-hand
side of Figure 2.2(c), while the responses to these component signals are pictured on the
. right-hand side. In Figure 2.2(d) we have depicted the actual input x[n], which is the sum
of the components on the left side of Figure 2.2(c) and the actual output y[n], which, by
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xin]

Figure 2.2  Graphical interpretation of the response of a discrete-time linear
system as expressed in eq. (2.3).

superposition, is the sum of the components on the right side of Figure 2.2(c). Thus, the
response at time n of a linear system is simply the superposition of the responses due to

the input value at each point in time.

In general, of course, the responses /[n] need not be related to each other for differ-
ent values of k. However, if the linear system is also time invariant, then these responses
to time-shifted unit impulses are all time-shifted versions of each other. Specifically, since
8[n — k] is a time-shifted version of 6[n], the response hy[n] is a time-shifted vers:ion of

holn]; i.e.,
hk[n] = ho[n - k]

(24)

For notational convenience, we will drop the subscript on hg[n] and define the unit impulse

(sample) response

. h[n] = ho[n].
That is, 4[n] is the output of the
eq. (2.3) becomes

+o

Ynd = > xlklhin - &),

k=-o

This result is referred to as the convolution sum o

2.5)

LTI system when 86[n] is the input. Then for an LTI system,

26)

ation on the right-hand side of eq. (2.6) is kn [ superposition sum, and the oper
. - Le. own . i
and h[n]. We will represent the operation of convzsl,:?ii convolution of the sequences 17

n symbolically as
y[n] = x[n] * h[n).
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x[—1] 3[n 1] x[=1]h_4[n]
s avs |:>
! 0 n
x{0] 3[n}
—
x[1] 8[n—1] x[1] hy[n]
—
©
x[n]
[ ]
[
cee cee |—_—>
* 0 n

(d) Figure 2.2 Continued

Note that eq. (2.6) expresses the response of an LTI system to an arbitrary input in
terms of the system’s response to the unit impulse. From this, we see that an LTI system
1s completely charactenzed by its response to a single signal, namely, its response to the
unit impulse. :

The interpretation of eq. (2.6) is similar to the one we gave for eq. (2.3), where, in the
case of an LTI system, the response due to the input x[k] applied at time k is x[k}h[n = k |

Le., it is a shifted and scaled version (an “echo”) of h[n] As before, lhc actual output is
the superposmon of all thwe Tesponses. :
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Example 2.1

Consider an LTI system with impulse response h[n] and input x[n], as illustrated i
Figure 2.3(a). For this case, since only x[0] and x[1] are nonzero, eq. (2.6) simplifieg tg

the expression '
y[n] = x[0Jh[n — O] + x[1]1h[n — 1] = 0.5h[n] + 2Ah[n — 1]. (2.8)

The sequences 0.54[n] and 211[:3 — 1] are the two echoes of the impulse response Neede q
for ‘the superposition .involved in generating y[n]. These echoes are displayed in F;
~ ure 2.3(b). By summing the two echoes for each value of n, we obtain yin], whick g-
shown in Figure 2.3(c). | ' 18
h[n]

25
f 2 yn]
0.5
2

. . Figﬁre 2.3 () The impy ' '
4 XI7l to . _ pulse response h[p of ' i
th[e ]nonztgren S\sllésltlfg O(fb%ht:?nr[;sustponses or “tgct]mesfl"r| OLlefi?zft:r?:i %r;ﬂnan "1]?“:0
, namely, x[01 = -1 it
overall response y{n], which s the sur¥{ ())(f[?I]'IB ec%ossﬁrr]ld(g)m‘ g1

e s s T

L
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By considering the effect of the superposition sum on each individual output sample,
we obtain another very useful way to visualize the calculation of y[n] using the convolution
sum. In particular, consider the evaluation of the output value at some specific time n. A
particularly convenient way of displaying this calculation graphically begins with the two
signals x[k] and h[n — k] viewed as functions of k. Multiplying these two functions, we
obtain a sequence g[k] = x[k]h[n — k], which, at each time %, is seen to represent the
contribution of x[k] to the output at time n. We conclude that summing all the samples
in the sequence of g[k] yields the output value at the selected time n. Thus, to calculate
y[n] for all values of n requires repeating this procedure for each value of n. Fortunately,
changing the value of n has a very simple graphical interpretation for the two signals x[£]
and h[n — k], viewed as functions of k. The following examples illustrate this and the use
of the aforementioned viewpoint in evaluating convolution sums.

Example 2.2

. Let us consider again the convolution problem encountered in Example 2.1. The se-

. quence x[k] is shown in Figure 2.4(a), while the sequence hA[n — ], for n fixed and

- viewed as a function of k, is shown in Figure 2.4(b) for several different values of n. In

- sketching these sequences, we have used the fact that A[n — k] (viewed as a function of

..+ k with n fixed) is a time-reversed and shifted version of the impulse response 4[£]. In

- particular, as k increases, the argument n — k decreases, explaining the need to perform a

; ~ time reversal of h[k]. Knowing this, then in order to sketch the signal h[n — k], we need

-+ only determine its value for some particular value of k. For example, the argument n — k

will equal 0 at the value k = n. Thus, if we sketch the signal h[— k], we can obtain the

" signal h[n — k] simply by shifting to the right (by n) if n is positive or to the left if n is

. negative. The result for our example for values of n < 0,n = 0,1,2,3, and n > 3 are
shown in Figure 2.4(b).

Having sketched x[k] and h[n — k] for any particular value of n, we multiply
these two signals and sum over all values of k. For our example, for n < 0, we see from
Figure 2.4 that x[k]h[n — k] = O for all k, since the nonzero values of x[%] and h[n — k]
do not overlap. Consequently, y[n] = 0 for n < 0. For n = 0, since the product of the
sequence x[k] with the sequence A[0 — k] has only one nonzero sample with the value
0.5, we conclude that

-]

y[0] = > x[kIA[0 — k] = 0.5. (2.9)

k=-

The product of the sequence x[k] with the sequence k[1 — k] has two nonzero samples,
which may be summed to obtain

o

y[1l = > x[kIh[1 — k] = 0.5 +2.0 = 2.5. (2.10)
Similarly, |
‘ T yl2) . i x[KIh[2 — K]-= 0.5 + 2.0 = 2.5, @2.11)
i b i
. and
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29 X[
—e— :0'5; 1—0——0-—-0———_k
(@)
1 h[n-Kk], n<0
e
1 I h[0-K]
210 k
1 h[1—K]
‘ -I1 l 1T T g K
1 h[2—K]
oL
160
0 1 2 3 k
h[n—k], n>3
o 11
? 0 n2n-1 n Kk
(b)

Figure 2.4 Interpretation of eq. (2.6) for the signals h[n] and x[n] in Fig-
ure 2.3; (a) the signal x[k] and (b) the signal h[n — k] (as a function of k

! with n fixed) for several values of n (n < 0; n = 0,1, 2, 3; n > 3). Each
e of these signals is obtained by reflection and shifting of the unit impulse re-

* sponse h[K]. The response y[n] for each value of n is obtained by multiplying
the signals x[K] and Ai[n — k] in (b) and (c) and then summing the products
over all values of k. The calculation for this example is carried out in detail in
Example 2.2. — ST

-2}

Y31= > x[kIA[2 - K] = 2.0, 2.12)

k:—cn

. Finally, for n > 3, the product x[KlA{n — ] is zero for all k, from which we conclude

;'}Z‘zy, [n) = Oforn > 3. The resulting output values agrée with those obtained in EX3™
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Example 2.3

“Consider an input x[#] and a unit impulse response A[n] given by
x[nl = a"u[n],
h[n] = u[n],

~ with0 < & <.1. These signals are illustrated in Figure 2.5. Also, to help us in visualizing

and calculating the convolution of the signals, in Figure 2.6 we have depicted the signal

. x[k]followed by h[—k], h[—1— k1, and h[1— k] (that s, h[n —k]forn = 0,—1,and +1)

" and, finally, h[n — k] for an arbitrary positive value of n and an arbitrary negative value

of n. From this figure, we note that for n < 0, there is no overlap between the nonzero

- points in x[k] and htn — k]. Thus, for n < 0, x[k]h[n — k] = O for all values of k, and
hence, from eq. (2.6), we see that y[n] = 0,n <0.Forn = 0,

k
xkIhln — K] = {g ik

x[n] = o"u[n] ‘
——00000600000¢
0

“”mmmmn

. hIn] = u[n]

A 111

—0 0000000000

Figure 2.5 The signals x[n] and h[n] in Example 2.3.

 Thus, forn = 0,
yn = > ak,
k=0
and using the result of Problem 1.54 we can wiite this as

n 1-- an+l
y[n] = Za" =714 forn = 0. (2.13)
k=0

' Thus, for all n,

i

13
By
|

=

. The signal y[n] is sketched in Figure 2.7.

yin] = (1 - _":")u[nl.
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x[k] = o ulk)

_”.U-”.“.”.[UJ_UJJ...'.'_';

e ) -0 0 8000000

()

h(~ k]

111

(b)

h{~1-K]
e 00&00-0@—00-0&.-0—0—0—0— -

o1

o

(c)

Hmmm ..;

1

=
I

Figure 2.6 Graphical interpretation of
sum for Example 2.3, the calculation of the convolution
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CyIn) = (k‘i:) uln]

-a

OOea soe

Figure 2.7  Qutput for Example 2.3.

The operation of convolution is

sometimes descriped i “sliding” -
quence h[n — k] past x[k]. For exampl escriped in terms of “sliding” the se

€, suppose we have evaluated y[n] fo ic-
ular valEle of n, say, n = ng. That is, we have sketched the signal h[:o[ —] k]r rsl?tﬁteil?l?;git
by the sngnal' x[k], and summed the result over al] values of k. To evaluate yin] at the next
value of i—le, n = ng -+ 1—we need to sketch the signal h[(ng + 1) — k]. However, we
can do this SImpl_y by taking the signal hlng — k] and shifting it to the right by one point.
For each successive value of n, we continue this process of shifting h[n — k] to the right
by one point, multiplying by x[k], and summing the result over k.

Example 2.4
As a further example, consider the two sequences

_]1 0=n=<4
x] [0, otherwise

- and

_Ja" 0=n=6
hin).= {0, otherwise °

\  These signals are depicted in Figure 2.8 for a positive value of @ > 1.In orderto calculate
. the convolution of the two signals, it is convenient to consider five separate intervals for
. n. This is illustrated in Figure 2.9.

" “Interval 1.  For n < 0, there is no overlap between the nonzero portions of x{k] and
. h[n — k], and consequently, y[n] = 0.
Interval2. For0 <n's=4,
‘ | n-k

LCUEE RS v

i
t
|
i
,,‘
it
i |

e

. agnn

% 1 AR en * P
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, . x[n]
e -2-1 l ] I |—0—0—0——.—.—.—H:
——¢—0—0—0—0—9¢ 012345 n
@)
? h[n]
XX _2_.1 'T II“ e
- 012345686 7 n
()
Figure 2.8 The signals to be convolved in Example 2 4.
- Thus, in this interval,
Y =" ank 1 ;
k=0 r :

- Wecan evaluate this sym using the finite sum fo

| ! rmula, eq. (2.13). S ifi
- the variable of summation in eq, (2,14) from £ ) fhsificall,

Y» changing |
tor=n—¢ we obtain |

L —_ i+l
il = gr = Lzt
B0 r=0 -Q L
: Interval 3, Forn>4butn-5 < 0(i.e.,4<.n <6) : 3

I

i‘ ; X[klh[n - k] = [g"‘*, Oths k=<4
‘ » Otherwise

- Thus, in this interval,

l—pgoim = —— 7 [2.1@;‘
o ' ,

6 < 4(ie., for6 < = 10)
XTkhin ~ 4 < {""”*- (n-6) < p <y
0, Otherwise .
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so that
4

yinl= > @

t=n-6

n-k

We can again use eq. (2.13) to evaluate this summation. Lettingr = k—n+6, we Obtzg

10-n 10-n 1- Cl"_" an-—4 7

" 6 Iy — 6 —

il = S o =at > @) =@
r=0 r=0

l-a!  1-a«a

Interval 5. For n — 6 > 4, or equivalently, n > 10, there is no overlap betweep gp,,
nonzero portions of x{£] and A[n — k], and hence,

¥[n] = 0.
Summarizing, then, we cotain

(0, n<0
1 —a™!
l-a '’
au—4_au+l
l—«

nﬂ_a'i

0=n=<4

, 4<n=6

x , 6<n=10
l-«a

0, 10<n

which is pictured in Figure 2.10.

V ' yin]

9‘”
———to 0o —e
0 4 6 10 n

Figure 2.10 Result of performing the convolution in Example 2.4.

Example 2.5
; l(ricl'lnmdct an LTI system with input x[n] and unit impulse response A[n] specified as
ollows:
- x[n] = 2"u[-n], 217
h[n] = ufn). (2.19
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1
1
7 x[k] = 2u[—K]
1.1 1
6 8 4 ]
...‘.... ' ' L 4 . 4 —a—
-2 -1 0 k
1
h[n—k]
o—o—o
n k
(@)
§ 2T e 9 T
yln)
14 1
t:. l LR
‘. 1 1 14 2 l
| 1‘6 8 ]
Il.’ , 1
-3 -2 -1 0 1 243 q
(b)

Figure 2,11  (a) The sequences x[k] and h[n— k] for the convolution prob-
lem considered in Example 2.5; (b) the resulting output signal y[n].

;"' ',; The sequences x| k] and h[n — k] are plotted as functions of k in Figure 2.11(a). Note that
; - x[k] is zero for k > 0 and h[n — k] is zero for k > n;We also observe that, regardless of
.- the value of n, the sequence x[k]h[n — k] always has nonzero samples along the k-axis.

" When n = 0, x[k]h[n — k] has nonzero samples in the interval £ <0, It follows that,
Ll forn =0,

3 , 0

0
o Vil = > xlklhin -k = > 2k (2.19)
e k=-cw k=-o '
223 :

> To evaluate the infinite sum in €q. (2.19), we may use the infinite sum formula,

>ak = L 0<|a|<1.

HG

e S (2.20)
i Changinf the variable of summation in eq. (2.19) from k to r = —k, we obtain
S 2k - i(l)k B (221)
k= =0 \2 1-(112) ;

W

2 Thus, y[n] takes on a constant value of 2 forn = 0.
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When n < 0, x[k]h[n = k] has nonzero samples for k = n. It follows that, for
' - a<0, n
=S M-k = > 2%
yinl = > x(kIAL k;m 2.2

k=—0°

= —k and then m = [ + n, we can wugaip Make

; ] f variable / .
By performing a changs o to evaluate the sum in eq. (2.22). The resyl;

.+ use of the infinite sum formula, q. (2.20),
" is the following for n < 0:

| = 1Y = (1" 1 lm=n,=n+l
e S-S0 (ST e e

I=-

. The complete sequence of y[n] is sketched in Figure 2.11(b).

These examples illustrate the usefulness of visualizing the calculation .of the con.
volution sum graphically. Moreover, in addition to providing a useful way in which tg
calculate the response of an LTI system, the convolution sum also provides an extremely
useful representation for LTI systems that allows us to examine their properties in great
detail. In particular, in Section 2.3 we will describe some of the properties of convolution
and will also examine some of the system properties introduced in the previous chapter in
order to see how these properties can be characterized for LTI systems.

\/2{ CONTINUOUS-TIME LTI SYSTEMS: THE CONVOLUTION INTEGRAL

In analogy with the results derived and discussed in the preceding section, the goal of this
section is to obtain a complete characterization of a continuous-time LTI system in terms
of its unit impulse response. In discrete time, the key to our developing the convolution
sum was the sifting property of the discrete-time unit impulse—that is, the mathematical
representation of a signal as the superposition of scaled and shifted unit impulse functions.
Intuitively, then, we can think of the discrete-time system as responding to a sequence of
individual impulses. In continuous time, of course, we do not have a discrete sequence of
input values. Nevertheless, as we discussed in Section 1.4.2, if we think of the unit im-
pulse as the idealization of a pulse which is so short that its duration is inconsequential for
any real, physical system, we can develop a representation for arbitrary continuous-time
§1gnals In terms of these idealized pulses with vanishingly small duration, or equivalenﬂy,
yﬁulses e’Id}ﬁs repres?tation is developed in the next subsection, and, following that, we
1l proceed very much as in i ‘s i
for continuous-gme LTI Systesr:::mn 2.1 to develop the convelution integral representation

2.2.1 The Representation of Continug i -
' ontinuous- Si :
of Impulses Time Signals in Terms

g; ((i;‘goi,:];ec?nugmous'ﬁ.me_cou"tel'Parl of the discrete-time sifting property in
COI.l[iI'll:IOL;S-U'me gin by cons1d.enng a pulse or “staircase” approximation, (1), 10 a
signal x(z), as illustrated ip Figure 2.12(a). In a manner similar to that
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X(—2A)3,(t + 2A)A

T

-2A -A - :

X(—24)

(b)
X(—A)d,(t + A)A

x(—4)

©

X(0)34(t)A

x(0)

0A g
(d
X(A)3,(t—A)A

x(A)

A2A n bt oty s a S i
‘ ; . . ~_ 'Figure 2:12  Staircase approxima-
(e '

tion to a continuous-time signal.
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me case, this approximation can be expressed as a lineay o

mployed in the discrete-ti AppI¢
Eingtic?; of delayed pulses, as illustrated in Figure 2.12(a)—(e). If we define

5.0 L 0=r<A 2
1) = ’ X
. (0, otherwise %)

then, since A84(7) has unit amplitude, we have the expression

jeed

) = > x(kA)Sa(r — kA)A. (2.25)

k:—m

From Figure 2.12, we see that, as in the discrete-time case [eq. (2.2)], for any value of;
only one term in the summation on the right-hand side of eq. (2.25) is nonzero.

As we let A approach 0, the approximation X(f) becomes better and better, and in the
limit equals x(¢). Therefore,

x(n) = lim > x(kA)8a(r = kA)A. (2.26)

k:—cc

Also, as A — 0, the summation in eq. (2.26) approaches an integral. This can be seen by
considering the graphical interpretation of the equation, illustrated in Figure 2.13, Here,
we have illustrated the signals x(7), 8o(f — 7), and their product. We have also indicated
a shaded region whose area approaches the area under x(7)84(t — 7) as A — 0. Note that
the shaded region has an area equal to x(mA) where r — A < mA < t. Furthermore, for
- this value of 7, only the term with k = m is nonzero in the summation in eq. (2.26), and

thus, the right-hand side of this equation also equals x(mA). Consequently, it follows from
eq. (2.26) and from the preceding argument that x(¢) equals the limit as A — 0 of the area
under x(7)8a(t — 7). Moreover, from eq. (1.74), we know that the limit as A — 0 of 84 (!
is the unit impulse function 8(f). Consequently,

x(t) = f x(1)6(t — 7)dr. (2.27

b o]

{\s_ in1 discrete time, we refer to eq. (2.27) as the sifting property of the continuous'ﬁme
impulse. We note that, for the specific example of x(t) = u(z), eq. (2.27) becomes

4o o

u(t) = J u(t)o(t — r)dr = J 6(t — 7)dr, (228
— . 0

sinc;e u(t) = Ofort < 0 and u(r) =

derived in Section 142, -

A “smoaill?angilmﬁ’ne?ﬁ (.27 Sl?omc.l be viewed as an idealization in the sense thab fof
practical purpofe*EquZt?PprgmmauOn of x() in eq. (2.25) is essentially exact for & J
taking A to be VaI.liSh_in 10n (2:27) then simply Iepresents an idealization of eq. 2.25)%
s S e bg y small, Nf)te also that we could have derived eq. (2.27) djreCd?)

: © hasic properties of the unit impulse that we derived in Section I+~

lforr > 0. Equation (2.28) is identical to eq. ( 1.73)
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X (1)
|
T
(a)
Balt— 1)
1
A
mA
|

t-A t T

(b)

X(1)3,(t— 1)

x(mA) *

Bl

m
7

t—A
-
Figure 2.13 Graphical interprcta-
(© tion of eq. (2.26).

<

Specifically, as illustrated in Figure 2.14(b), the signal 8(f — 7) (viewed as a function of
r with ¢ fixed) is a unit impulse located at 7 = ¢. Thus, as shown in Figure 2.14(c), the
signal x()8(¢ — 7) (once again viewed as a function of 7) equals x(1)6(t — 7) [i.e.,itis a
scaled impulse at 7 = t with an area equal to the value of x(#)]. Consequently, the integral
of this signal from 7 = —®to7 = +@ equals x(#); that is,

400 +@ +0o0
j x(7)8(t — T)dT = J x(®)0(t — T)dT = x(1) I_ ot — rydr = x(o).

Although this derivation follows directly from Section 1.4.2, we have included the deriva-

tion given in egs. (2.24)~(2.27) to stress the similarities with the discrete-time case and,

in particular, to emphasize the interpretation of eq. (2.27) as representing the signal x(r)
. asa“sum” (more precisely, an integral) of weighted, shifted impulses. .
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(1)
‘ \¥/

(@

5(t—1)

(b)

x(z)8(t—7) = x({)8(t—7) (Y
A

Figure 2.14 (a) Arbitrary signal
x(7); (b) impulse &(t— ) as a function
of = with t fixed; (c) product of these
two signals.

T

—

()

2.2.2 The Continuous-Time Unit Impulse Response and the
Convolution Integral Representation of LTI Systems

time case, the representation developed in the preceding section provides

us with a way in which to view an arbitrary continuous-time signal as the superposition of

scaled and shifted pulses. In particular, the approximate representation in eq. (2.25) repré-
sents the signal £(t) as a sum of scaled and shifted versions of the basic pulse signal 8a(t).

Consequently, the response $(r) of a linear system to this signal will be the superposition
of the responses to the scaled and shifted versions of 84 (7). Specifically, let us define ha()
as the response of an LTI system to the input 8a(t — kA). Then, from eq. (2.25) and the

superposition property, for continuous-time linear systems, we see that

As in the discrete-

+ o
@0 = > x(kAa®A 229
The interpretation of eq. (2.29) is similar to that for eq. (2.3) in discrete time- {2
rpart of Figure 2.2.

particular, consider Figure 2.15, which is the continuous-time counte
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A
X(0)hg(t)A

X(0) -

!

(b)

A
x(a)hy(t)A

x(4) :>

/

(©

A
x(kA)hy(HA

S

I-I X(kA)

(d)

Y

x>
=)
o
S

0 t
(e)
x(t) y(t)
’\ /\/\f\, Figure 2.15 Graphical interpreta-
< tion of the response of a continupus-
0 t 0 t ; ) 4
; A time linear system as expressed in

(M eqs. (2.29) and (2.30).
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S in
n of

ave depicted the input x(¢) and its approximation (1), while ;
f the system to three of the weighte i Bur,
Se

Figure 2.15(a) we h . ; :
2.15(b)—(d), we have shown the responses : colt
the eg&p}-r:,fss)ion for £(r). Then the output (1) corresponding to £(¢) is the SUPerpOSiﬁo
all of these responses, as indicated in Figure 2.15(e). .

What remains, then, is to consider what happens as A becon}es vanishingly Smayy
i.e.,as A — 0. In particular, with x(7) as expressed in eq..(2._26), X(r) becomes ap iney ~
ingly good approximation to x(z), and in fact, the two coincide as A — 0. Consequenu ‘
the response to £(r), namely, y(r) in eq. (2.29), must converge to y(z), the responsy y, ;
the actual input x(z), as illustrated in Figure 2.15(f). Furthermore, as we have said, fOrtg |

“small enough,” the duration of the pulse 85(r — kA) is of no significance, in that, 4 far o
SpoHse

the system is concerned, the response to this pulse is essentially the same as the re

to a unit impulse at the same point in time. That is, since the pulse 8A (7 — kA) COMTespong
to a shifted unit impulse as A — 0, the response f1;4(¢) to this input pulse becomes ths
response to an impulse in the limit. Therefore, if we let /;(r) denote the response ¢ (ime:

to a unit impulse 6(¢ — 7) located at time 7, then

+x
() = im > x(kA)hea(DA. (2.30)

k=—'x

As A — 0, the summation on the right-hand side becomes an integral, as can be seen
graphically in Figure 2.16. Specifically, in Figure 2.16 the shaded rectangle represents one
term in the summation on the right-hand side of eq. (2.30) and as A — 0 the Summatiop

approaches the area under x(7)/h,(r) viewed as a function of 7. Therefore,

¥(@) = f (T (D, 231

The interpretation of eq. (2.31) is analogous to the one for eq. (2.29). As we showed
in Section 2.2.1, any input x(¢) can be represented as

+x
x(t) = [ x(7)é(t — 1)dT.

—c

x(1)h, ()

Shaded area = x(kA)h, 4(H)A

Figure 2.16 Graphical illustration
of egs. (2.30) and (2.31).

: ‘ N

kA (k+1)A

Scanned with CamScanner




‘Sec.22  Continuous-Time LTI Systems: The Convolution Integrai 7

That is, we can intuitively think of x() as a “sum” of weighted shifted impulses, where
the weight on the impulse 6(f — 7) is x(1)dr. With this interpretation, eq. (2.31) re[;resents
the superposition of the responses to each of these inputs, and b ,linearity the weight
on the response h+(t) to the shifted impulse 8(t — 7) is also ,x(T)dTy ’ ;

_ Equation (2-31). represents the general form of the response of a linear system in
continuous time. If_, 1n addition to being linear, the system is also time invariant, then
ha(t) = ho(t — 7); i.e., the response of an LTI system to the unit impulse 8(t — 7), which
is shifted by 7 seconds from the origin, is a similarly shifted version of the response to the

unit impulse func.ti(?n &(1). Again, for notationa] convenience, we will drop the subscript
and define the unit impulse response h(t) as

h(t) = ho(r); (2.32)

L.e., h(?) is the response to 8(7). In this case, eq. (2.31) becomes

+oo

Y1) = J x(T)h(t — 7)dT. (2.33)

—or

Equation (2.33), referred to as the convolution integral or the superposition iﬁtegral,
is the continuous-time counterpart of the convolution sum of. eq. (2.6) and corresponds
to the representation of -a continuous-time LTI system in terms of its response to a unit
impulse. The convolution of two signals x(f) and h(#) will be represented symbolically as

y(#) = x(1) * h(2). (2.34)

While we have chosen to use the same symbol * to denote both discrete-time and
continuous-time convolution, the context will generally be sufficient to distinguish the
two cases. ' :
As in discrete time, we see that a continuous-time LTI system is completely char-
" acterized by its impulse response—i.e., by its response to a single elementary signal, the
unit impulse 8(f). In the next section, we explore the implications of this as we examine
a number of the properties of convolution and of LTI systems in both continuous time and
discrete time. : L
The procedure for evaluating the convolution integral is quite similar to that for its
discrete-time counterpart, the convolution sum. Specifically, ip eq. (2.33) we see that, for
any value of ¢, the output y(f) is a weighted integral of the input, where th_e weight on
x(7) is h(t — 7). To evaluate this integral for a specific value of ¢, we ﬁrlst obtain the sign'al
h(t — 7) (regarded as a function of 7 with ¢ fixed) from h(7) by areflection about the origin
and a shift to the right by ¢ if # > 0 or a shift to the left by |¢| for 1 < 0. We next multiply
together the signals x(7) and Az — 7), and y(1) is obtamf.:d by integrating t!le r-esulnng
product from 7 = —eto 7 = +oo, To illustrate the evaiuation of the convolution integral,

let us consider several examples.
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Example 2.6
~ Let x(r) be the input to an LTI system with unit impulse response ), Whiye

x(0) = e "u(t), a>\(

% . and
h(t) = u(r).

In Figure 2.17, we have depicted the functions A(7), x(7), and h(r ~ 7) for
value of 7 and for a positive value of £. From this figure, we see that for ¢ - 0 “tl%ﬁy,

of x(7) and h(r — 7) is zero, and consequently, y(¢) is zero, For ¢ (), Wiy

e, <7<y

Xt = 1) = [ 0 otherwise *

h(r)

x(7)

h(t=1)

t<0

h{t-1)

t>0

0 t d

Figure 2.17  Calculation of the convolution Integral for Exampi 25
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i From this expression, we can compute (1) for ¢ > 0
! ’ L e
{30 y() = [ e"Tdr = =g
! 0 q 0
| R
= Z(l ¢ )-

] . Thus, for all £, y(1) is

'- ' ]
L] | YO = ~(1 = e™"u(r),
. which is shown in Figure 2,18,
E
e y(t)=1§(1 - & ")u(t)
4 : 1
] ==
el
B
b

tal

0 t

Figare 2.18 Response of the system in Example 2.6 with impulse re-
sponse h(t) = u(t) to the input x(t) = e~#u(t).

Example 2.7

{77 Consider the convolution of the following two signals:
() 1, o<t<T
Bl L 1) = [O, otherwise ’
s

: _ ]y 0<e<2T
‘ h) = [0, otherwise

| As in Example 2.4 for discrete-time convolution, it is convenient to consider the evalu-
. ation of y(¢) in separate intervals. In Figure 2.19, we have sketched x(7) and have illus-
. trated h(z—7) in each of the intervals of interest. For r < Oand fort > 3T, x(T)h(t—7) =
el

e

i | 0 for all values of 7, and consequently, y(f) = 0. For the other intervals, the product
“ | x(7)h(t — 7) is as indicated in Figure 2.20. Thus, for these three intervals, the integration
; can be carried out graphically, with the result that

L (0, t<0

K 12, 0<t<T

) = 7 Tt— 1712, T<t<2T ,

o =1+ T4+ 3T 2T <t <3T

1' ' 0, 3T <t

{0 which is depicted in Figure 2.2]
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1
! 0 T \
T

i ! h(t—1)

| 27
kR t<p
? £
| A t-2T7 ;
P ht—1)
; A
f O<t<T
£ t-27 t
:
h(t-1)
; 2T
i T<t<oT
(
kg 0=t -
b t-2T
L h(t-1)
by 2T
, J 2T <t < 3T
l
57 j 0 \ t %
o t—oT
Py
B
bt h(t—1)
.
- \ t>ar
£ o / t
L t-27

o Figure 2.1 i
i Example 2.7_9 Signals x(r) and h(t — =) for different values of !

100
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x(1)hit—1)

0<t<T

1 t T<t<2T

i 3 ; X(1)h(t—7)

e 21 :
; t-T h oT<t<aT

P T 1
t-2T

()

Figure 2.20 Product x(r)h(t — r) for Example 2.7 for the three ranges of
values of t for which this product is not identically zero. (See Figure 2.19.)

vty

) 0 T 2T 3T t

Figure 2.21  Signal y(f) = x(t) * i(t) for Example 2.7.

T ——

Example 2.8
¢ Let y(1) denote
o () = ¥ u(-1), (2.35)
b h(t)'= u(t—3). (2.36)
i — ) are plotted as functions of 7 in Figure 2.22(a). We first

5
§ 14 i 7) and A(? . , { .
i E:c:?gxl:t fl(aclc' two signals have regions of nonzero overlap, regardless of the value

the convolution of the following two signals:

<4
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x(r) = e27u(=7)

1

h(t—)

t-3 0 T
@)

y(t)

11

2 7

0: < ol t
(b)

'Figure 2.22 The convolution problem considered in Example 2.8.

of t. Whent—3 s 0, the product of x(7) and h(z — 7) is nonzero for — <7<t
{ . and the convolution integral becomes

y@t) = f - e¥dr = %ez(’_3). (230
Fort—3 = 0, the product x(r)h(t—7) is nonzero for —ee < 7 < 0, so that the convolui®
: integral is .

( y@) = fl Py = @
' The resulting signal y(0)is plotted in Figure 2.22(b).

| A il i
As these examples and those presented in Section 2.1 illustrate, the gﬂ:phvlal“"'m
terpretation of continuous-time and discrete-time convolution is of considerable

visualizing the evaluation of convolution integrals and sums.
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23 PROPERT IES OF LINEAR TlME-INVARlANT SYSTEMS -
In the precediqg two sections, we developed the extremely important representations
of continuous-time and discrete-time LTI systems in terms of their unit impulse re-
sponses. In discrete time the representation takes the form of the convolution sum, while
its continuous-time counterpart is the convolution integral, both of which we repeat here

for convenience:
+o = 24 -
yinl = > x[klh[n — k] = x[n] * h[n] |. (2.39)
k=-o BNTRT
+o ) .
y(t) = J Jg('r)h(t = 1)d7 = x(t) * h(¢) ' (2.40)

As we have pointed out, one consequence of these representations is that the charac-
teristics of an LTI system are completely determined by its impulse response. It is impor-
tant to emphasize that this property holds in gerieral only for LTI systems. In particular, as
illustrated in the following example, the unit impulse response of a nonlinear system does
-not completely characterize the behavior of the system. ;

 Example 2.9

- g2 Consider a discrete-time system with unit impulse response

g [ 0, otherwise" (241)
If the system is LTL, then'eq. (2.41) completely determines its input-oﬁtput behavior. In
particular, by substituting eq. (2.41) into the convolution sum, eq. (2.39), we find the
following explicit equation describing how the input and output of this LTI system are
related: - : . i bun guital
| % ol =4 xn-1. T

On the other hand, there are many nonlinear systems with the same response—i.e., that
given in eq. (2.41)—to the input 6[n]. For example, both of the following systems have
this property: o€ ke (it -

3l = Gl + adn - 111,
~y[n] = max(x[n], x[n — 1]).

Conchucntly, if the system is nonlinear it is not completely characterized by the impulse
% response in eq. (2.41). S LY

. The preceding example illustrates the fact that LTI systems have a number of prop-
erties.not possessed by other systems, beginning with the very special representations that
they have in terms of convolution sums and integrals. In the remainder of this section, we
explore some of the most basic and important of these properties.
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2.3.1 The Commutative Property

A basic property of convolution in both continuous and discrete time is thag jy j5 , co

. SE, L9 ) .
tative operation. That Is, 1n discrete time "

+o .
x[n] * h[n] = hin] * x[n] = z hlk]x[n — k],
k»=_°c (243)
and in continuous time
400

x(t) * h(t) = h(t) * x(t) = J

L h(T)x(t — T)dT. (2‘44)

These expressions can be verified in a straightforward manner by means of a sybs;

. . itut]
of variables in eqs. (2.39) and (2.40). For example, in the discrete-time case, if tlon

r = n— kor, equivalently, k = n — r, eq. (2.39) becomes Vel
+oxc ' v +-co |
x[nl*hfn] = > x[Klh[n = k] == > x[n — rlh[r] = h{n] * x[n]. (245)
' i ) k=-x - r=—oc )

With this substitution of variables, the roles of x[n] and h[n] are interchanged. Accordi
to eq. (.2.45), the output of an LTI system with input x{n] and unit impulse re'sponse hl[ng
is identical to the output of an LTI system with input A[n] and unit impulse response x| b
For example, we could have calculated the convolution in Example 2.4 by ﬁrs[i reﬂectir;]t;
(=]

and shifting x[], then multiplying the signals x[7 — :
products for all values of k. : s s = K and hlk], and finally summing the

Similarly, eq. (2.44) can be verified b

. ) achan ; -
thl_S result in continuous time are the sam 4 BS oL variables, and the implicationsof

e: The output of an LTI system with input x(r) and

- . me .
-be easier to visualize but both forny and eq. (2.40) or (2.44) in continuous time] may
20 Dot Torms always result ip the same answer

2.3.2 The Distributive Property

l t . P’ . i
ution is the d.zsrrzbutzve Property. Specifically, convolutio®

X[n]* (hy[n) + hy[n]) =

and in COntinuOUS tlme x[n] * h] [n] + X[n] * hZ [n], (246)
X0 * [y (1) +
This property can be verified i, 1o, X(0) * hy(r) + x(1) * hy(2). 247
1Zhtfo
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ya(t)

hy(t) —j
x(t) ——1 ( : —y(t)

G L

Ya(t)

Y

(@)

[t Figure 2.23 Interpretation of the
Y distributive property of convolution

for a parallel interconnection of LT]
() systems.

The distributive property has a useful interpretation in terms of system interconnec-
tions. Consider two continuous-time I TT systems in parallel, as indicated in Fi gure 2.23(a).
The systems shown in the block diagram are LTI systems with the indicated unit impulse

responses. This pictorial representation is a particularly convenient way in which to denote

LTI systems in block diagrams, and it also reemphasizes the fact that the impulse response
of an LTI system completely characterizes its behayior.

The two systems, with impulse responses hy(?) and hy(z), have identical inputs, and
their outputs are added. Since

Yi(t) = x(t) * by (¢)
and

Y2(1) = x(t) * hy(t), -
the system of Figure 2.23(a) has output

YO = x(0) * hy(2) + x(2) * hy(r), (2.48)

corresponding to the right-hand side of €q. (2.47). The system of Figure 2.23(b) has output

YO = X% [ + b)),

(2.49)
COHesp9nding to the left-hand side of eq. (2.47). Applying eq. (2.47) to eq. (2.49) and
Com_léanng the result with eq. (2.48), we see that the systems in Figures 2.23(a) and (b)
are 1dentical,

_ There is an
In Figure 223 is

dentical interpretation in discrete time, i which each of the signals
Y2(), and y(r) are

replaced by a discrete-time counterpart (i.e., x(t), hy(t), ha(D), yi1(0), 1

teplaced by x[n), hyn), hyln), y[n], y,[n], and yln], respectively). In i
SUmmary, thep, by virtue of the distributive property of convolution, a parallel combina-
tion of LTY Systems can be replaced by a single LTI system whose unit impulse response
18 the sum of the §

ndividual unit impulse responses in the parallel combination.
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Also, as a consequence of both the commutative and distributive Properties, we hay,
L[l + xoll] * hln = xiln] ¥ O] + xo[n) * fn] o5

and ;
| [x1(0) + x2()] * h(t) = x1(8) * h(r) + x2(8) * h(D), sy

which simply state that the response of an LTI system to the sum of two inputs myg; equy]
the sum of the responses to these signals indiV1du?.Hy: ‘
As illustrated in the next example, the distributive property of convolution ¢

be exploited to break a complicated convolution into several simpler ones. il
Example 2.10 _
Let y[n] denote the convolution of the following two sequences:
xn] = (%) uln] + 2" n), 5
‘ hln] = u[n). (2.53)
Note that the sequence x[n] is nonzero al

ong the entire time axis. Direct evaluation of

express y[n] as the spm of the results of
if we let x, [n] = (172)"u[n] and x2[n]

ol bl YIn] = (x1[n] + x,[n]) # hin). - (2.54)
Using the distributive property of convolution, we may rewrite eq, (2.54) as

Y Yl = yiln] + y,[n), | (2.55)
and yiln] = x, [nj * h[n] (2.56)
yalnl = xp[n] % . 2.57)

Figure Ple 2.5. Their Sum 1s y[n], which is shown in
yln]'
L
; s P Y ¢ ¢--—-
®
. 3¢

£ 9.
13
1'3
‘3 L
=3-2 = —
. n
The signgy yin) = xn]

Figure 5 ,

* hin] for Example 2.10.
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2.3.3 The Associative Property
Another important and useful property of convolution is that it is associative. That is, in
discrete time

x[n] * (y[n] * ho[n]) = (x[n] * hy[n]) * ha[n], (2.58)
and in continuous time
x(2) * [h1(2) * ha()] = [x(2) * hy(2)] * ha(2). (2.59)

This property is proven by straightforward manipulations of the summations and integrals
involved. Examples verifying it are given in Problem 2.43.
As a consequence of the associative property, the expressions

y[n] = x[n] * hy[n] * hy[n] (2.60)
and
Y(@) = x(£) * hy(t) * ha(2) (2.61)

are unambiguous. That is, according to egs. (2.58) and (2.59), it does not matter in which
order we convolve these signals.

An interpretation of the associative property is illustrated for discrete-time systems
in Figures 2.25(a) and (b). In Figure 2.25(a), )

y[n] = w[n] * hy[n]
= (x[n] * Ay [n]) * hy[n].

In Figure 2.25(b),

yln] = x[n] * h[n]
= x[n] * (hy[n] * ha[n]).

According to the associative property, the series interconnecticn of the two systems in
Figure 2.25(a) is equivalent to the single system in Figure 2.25(b). This can be generalized
to an arbitrary number of LTI systems in cascade, and the analogous interpretation and
conclusion also hold in continuous time. :

By using the commutative property together with the associative property, we find -
another very important property of LTI systems. Specifically, from Figures 2.25(a) and
(b), we can conclude that: the impulse response of the cascade of two LTI systems is the
convolution of their individual impulse responses. Since convolution is commutative, we
can compute this convolution of /;[n] and hy[r] in either order. Thus, Figures 2.25(b) and
(c) are equivalent, and from the associative property, these are in turn equivalent to the
system of Figure 2.25(d), which we note is a cascade combination of two systems as in—
Figure 2.25(a), but with the order of the cascade revetsed. Consequently, ihe unit impulse
response of a cascade of two LTI systems does not depend on the order in which they are
cascaded. In fact, this holds for an arbitrary number of LTI systems in cascade: The order
In which they are cascaded does not matter as far as the overall system impulse response
1S concerned. The same conclusions hold in continuous time as well.
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i hz[n] —-> yin]

Y

»x[n]——»\ h!_[n] .

(@)

x[n]——)- hn] = hy[n] *hz[_n]; : —)"Y[n]

v

Xl ———— hin] = hglo] <y [1] | y{n]

. fe)

X[n] =———| ‘hyln] | >-{ hy[n] - 7‘ yInl " Figure 2.25 Associative property of
. ' L o+ e convolution.and the implication of this
and the commutative property for the

(), (o = inly series interconnection of LTI systems.

It is important to emphasize that the behavior of LTI systems~in cascade—and, in
particular, the fact that the overall system response does ot depend upon the order of the
systems in the cascade—is very special to such systems. In contrast, the order in which.
nonlinear systems are cascaded cannot be changed, in general, without changing theover-
all response. For instance, if we have two memoryless systems, one beingmultiplication

by 2 and the other squaring the input, then if we multiply first and square second, we obtait

e byl = 4a2[nkiss 1 (53805 siug;
. de\%."eir'ér,' if wefmﬁlt.iply'ijlsi 2aftcrsquanng, Wehave!
=22

Thus, being able to interchange the order of systems in a cascade is a'Charaqteﬁsﬁ; tl";fc i
ticular to LTI systems. In fact, as shown in Problem 2.51, ‘we need both linearity an |
invariance in order for this property to be true in generali’t | Ui T '

2.3.4 LTI Systems with and without Memory i

, ms A e - R
As specified in Section 1.6.1, a system is memoryless if its output at any time d?:nly ‘;
- only on the-value of the input at that same time, From eq. (2.39), we see tat 15case
- way that this can be true foradiscretg-time LTIsystem is if h[n] = 0forn # 0. In
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the impulse response has the form ]
h[n] = K8[n)], (2.62)
where K = h[0] is a constant, and the convolution sum reduces to the relation
yln] = Kx[n]. . (2.63)

If a discrete-time LTI system has an impulse response A[n] that is not identically zero for
n # 0, then the system has memory. An example of an LTI system with memory is the
system given by eq. (2.42). The impulse response for this system, given in eq. (2.41), is
nonzero forn = 1. e ,

From €q. (2.40), we can deduce similar properties for continuous-time LTI systems
with and without memory. In particular, a continuous-time LTI system is memoryless if -
‘h(r) = 0 for ¢ # 0, and such a memoryless LTI system has the form

) = Kx(f) i = 2.64)

for some constant K and has the impulse response

h(t) = K8(). (2.65)

Note that if K = 1 in egs. (2.62) and (2.65), then'these systems-become identity
systems, with output equal to the input and with unit impulse response equal to the unit
* impulse. In this case, the convolution sum and integral formulas imply that

xlnl = xfn] #8[n]
and 7

x(#) = x(t) % 8(t),
which reduc to the sifting propcftiés of tlié‘&iécrete-tifne and continuous-time unit im-
pulses: 2

B < Yemi s s
xnl = > x[kd[n—K -

- k=— .

+00
x(t) = J x(1)o(t — 7)dT.

—00

. \%ﬂs Invertibility of LTI Systems - |
Consider a continuous-time LTI system with impulse response h(?). Based‘on the discus-
sion in Se~tion 1.6.2, this system is invertible only if an inverse system emsts. that, when
connected 1. series with the original system, produces an ougput equal to the input to the
first system. Furthermore, if an LTI system is invertible, then it has an LTI inverse. (See
Problem 2.50.) Therefore, we have the picture shown in Figure 2.26. We are given a sys-
tem with impulse response A(z). The inverse system, with impulse response hy (1), results
In w(f) = x(f)—such that the series interconnection in Figure 2.26(a) is identical to the
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| S hap
x(t) ——>-| h(t) WO 51 gty [ W=
(@)
- Figure 2.26 'Goncept of an invere
| iy svst system for continuous-time LT/ sys.
X{f) e "’e""*g(;‘ys M tems. The system with impulse rg-
sponse hy(t) is the inverse of the

system with impulse response h(t) i
B h(t) * h(t) = 8(1) -

identity system.iﬁ Figure 2.26(b). Since the overall impulse response in Figure 2.26(a) is
h(f) * hy (£), we have the condition that h, (#) must satisfy for it to be the impulse response
. of the inverse system, namely,

h(t) * by (t) = 8(D). (2.66)

Similarly, in discrete time, the impulse response A1 [n] of the inverse system for an LTI
system with impulse response h[n] must satisfy

h[n] * hy[n] = &[n]. (2.67)

- The following two examples illustrate invertibility and the construction of an inverse
system.

Example 2.11

Consider the LTI system consisting of a pure time shift

y(t) = x(t —to). (2.69)

Such a system is a delay if to > 0 and an advance if t) < 0. For example, if o > 0, then
the output at time ¢ equals the value of the input at the earlier time ¢ — #o. If to = 0, the
system in eq. (2.68) is the identity system and thus is memory]ess. For any other vali®
- of 1o, this system has memory, as it responds to the value of the input at a time other than
i the current time.

' The impulse response for the system can be obtained from ea. (2.68) by taking the
Input equal to 6(¢), i.e.,

h(t) = 8(t — to). 269

Therefore,

x(t—tg).= x(t) 8'1([ - ;0)_ (2-70)

y; That lﬁf(:l;e convoluti'on of a signal with a shifted impulse simply shifts the Signal.' dis
e thef:,cover the input from the output, i.e., to invert the system, all that is re‘l!llre
. output back. The system with this compensating time shift is then the 109

4
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. system. That is, if we take

hy(t) = 8(t + 1),
then
h(t) * hy(1) = 8(t — 1) * 6(t + 1p) = 8(2).

Similarly, a pure time shift in discrete time has the unit impulse response 8[n—no],

- so that convolving a signal with a shifted impulse is the same as shifting the signal.
. Furthermore, the inverse of the LTI system with impulse response 8[n — no] is the LTI
- system that shifts the signal in the opposite direction by the same amount—i.e., the LTI
- system with impulse response 8[n + ny].

Example 2.12

. Consider an LTI system with impulse response

h[n] = u[n]. (2.71)
' Using the convolution sum, we can calculate the response of this system to an arbitrary
' input:
+x .
Yn) = > x[Kluln — K. (2.72)

k=—2x

. Since u[n — k]isOforn— k<0and 1 for n — k = 0, eq. (2.72) becomes

n

ylnl = > x[kl. (2.73)

=—0m®

That is, this system, which we first encountered in Section 1.6.1 [see eq. (1.92)], is a
. summer or accumulator that computes the running sum of all the values of the input

up to the present time. As we saw in Section 1.6.2, such a system is invertible, and its
inverse, as given by eq. (1.99), is

y[n] = x[n] - xln - 1], (2.74)
which is simply a first difference operation. Choosing x[n] = &[n], we find that the
impulse response of the inverse system 15

hi[n] = 8(n] — 6[n —11. (2.75)

i in indeed the impulse re-
As a check that A[n] in eq. (2.71) and hi[n] in eq. (2.75) are in pulse
sponses of LTI systems that are inverses of each other, we can verify eq. (2.67) by direct

calculation:

h[n] * hi[n] = u[n] *{8[n] — 8[r — 1]}

= u[n] *8[n] — uln] *8[n — 1] (2.76)
= u[n] et u[n - 1]
= 8[n].
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2.3.6 Causality for LTI Systems’

- ity: : of a causal
""/»In Section 1.6.3, we introduced the property of causality: The-output 0 isal systep,

depends only on the present and past values of the input to the system. By using the cop.

: : i rty to a corresponding property of the
lution sum and integral, we can relate this prope . "
?&;ulse response of an LTI system. Specifically, 1n order for a discrete-time LTI system o

be causal, y[n] must not depend on x[k] for k > n. From eq. (2.39), we see that for this (g

be true, all of the coefficients A[n — k] that multiply values of x[] for k > n must be zer,

This then requires that the impulse response of a causal discrete-time LTT system satisfy
the condition :

h[n] = 0 forn <O. 2.77

According to eq. (2.77), the impulse response of a causal LTI system mus’t be zero before
the impulse occurs, which is consistent with the intuitive concept of_ causality. More gener-
ally, as shown in Problem 1.44, causality for a linear system is equivalent to the condition
of initial rest; i.e., if the input to a causal system is O up to some point in time, then the

* output must also be 0 up to that time. It is important to emphasize that the equivalence

- of causality and the condition of initial rest applies only to linear systems. For example,
as discussed in Section 1.6.6, the system y[n] = 2x[n] + 3 is not linear. However, it is
causal and, in fact, memoryless. On the other hand, if x[n] = 0, y[n] = 3 # 0, so it does
not satisfy the condition of *aitial rest. '

For a causal discrete-time LTI system, the condition in eq. (2.77) implies that the
convolution sum representation in eq. (2.39) becomes

n

ynl = > x[klh[n - K, (2.78)

k=—-x

and the alternativq equivalent form, eq. (2.43), becomes

)’[n]r"—--Zh[k]x[n— kj. VL)
k=0 % BT

- Similarly, a.continuous-time LTI system is causal if
h)=0 forr<q (280
and in this case the convolution integra is given By -

!
y) = J._mx(T)h(t -~ dr = r h
0

mulator (k5] = u .
g ple 2.12, sati n]) and 1ts inverse (h[n] = _ —1]), @&
l‘)Vlt}? Impulse response h(z) =158f¥t iq. (2.'77) and therefore are[ c]ausa? ["Il']he p?l[rr; timl shif
ut_1§ noncausal for ¢, < () (in whi ) ‘ orty = 0 (when th . i delay)
anticipates f; Which case the ¢ = n the time shift is a
uture values bf the input) time shift is an advance, so that the 0P

(Tx(t = 7)ydr. 2.81)
_ Both the accy
scribed in Exam
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Finally, while causality is a property of systems, it is common terminology to refer to
a signal as being causal if it is zero for n < 0 or ¢ < 0. The motivation for this terminology
comes from eqs. (2.77) and (2.80): Causality of an LTI system is equivalent to its impulse
response being a causal signal.

/2:3.7 Stability for LTI Systems

Recall from Section 1.6.4 that a system is stable if every bounded input produces a
bouqded out.put. In order to determine conditions under which LTI systems are stable,
consider an input x[#] that is bounded in magnitude:

|x[n]| < B forall n. (2.82)

S-l{ppose that we apply this input to an LTI system with unit impulse response A[n]. Then,
using the convolution sum, we obtain an expression for the magnitude of the output:

+0o0
> hlklx(n — k]

k—.:—oo

Iy[n]| = - (2.83)

Since the magnitude of the sum of a set of numbers is no larger than the sum of the mag-
nitudes of the numbers, it follows from eq. (2.83) that

lylnl] = > |h[k]l|x[n — k]| (2.84)

k=—00

From eq. (2.82), |x[n — k]| < B for all values of k and n. Together with eq. (2.84), this
implies that

R
ly[n]| = B Z |h(k]| for all . (2.85)

k=—o

From eq. (2.85), we can conclude that if the imptilse response is absolutely summable,
that is, if
. s

> |RIK]| < e, | (2.86)

k=—oo

then y[n] is bounded in magnitude, and hence, the system is stable. Therefore, eq. (2.86) is
a sufficient condition to guarantee the stability of a discrete-time LTI system. In fact, this
condition is also a necessary condition, since, as shown in Problem 2.49, if eq. (2.86) is
not satisfied, there are bounded inputs that result in unbounded outputs. Thus, the stability
of a discrete-time LTI system is completely equivalent to eq. (2.86).

3 In continuous time, we obtain an-analogous characterization of stability in terms of
the impulse response of an LTI system. Specifically, if |x(#)| < B for all ¢, then, in analogy

with egs. (2.83)—(2.85), it follows that
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bl me'h('f)x(’ A

—c0

4o
< j (||t = DldT
_ N
= BJ |h(7)|d.
Therefore, the system is stable if the impulse response is absolutely integrable, i.e., if

+00
f |h(DldT < oo (2.87)
As in discrete time, if eq. (2.87).is not satisfied, there are bounded inputs that produce
unbounded outputs; therefore, the stability of a continuous-time LTT system 1s equivalent

to eq. (2.87). The use of egs (2.86) and (2.87) to test for stability is illustrated in the next
two examples.

Example 2.13

. Consider a system that is a

pure time shift in either continuous time or discrete time.
Then, in discrete tipe ;

+o 40
2> lhimll = " 180n = ng)| = 1, (2.88)
: while in continuous time
+o ) 4
f_ [h(D)|dT = I 8(r — to)|dr = 1, (Z89)

a_nd we copclude that both of these Systems are stable. This should not be surprising,
since if a signal is bounded in ma '

: gnitude, 5o is any time-shifted version of that signal
_ Now consider the accumulator described in Ex ' i

Z |u[n]|_= iu[n] = o,

n=ro00 * n=0

Similarly,

_ consid i . U
lator: e the integrator, the continuous-time counterpart of the accu?

t

x(7)dr. (2'90)

Yo = j

This is an unstable gys "
; le.system f i ‘ .
tor; i.e., a constant input giymere - o the Same rezson as that given for the 20
Eives rise to an Output that grows without bound. The i®?P
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B response for the integrator can be found by letting x(r) = &(z), in which case

h(t) = Jl d(r)dr = u(p)

+o +
J lu(r)|dr = J dr = o,

0

“.= Since the impulse response is not absolutely integrable, the system is not stable.

ﬁ.a The Unit Step Response of an LTI System

Up to now, we have seen that the representation of an LTI system in terms of its unit
impulse response allows us to obtain very explicit characterizations of system properties.

Specifically, since h[n] or h(ry completely determines the behavior of an LTI system, we
have been able to relate s

the impulse response.

There is another signal that is also used quite often in describing the behavior of
LTI systems: the unit step response, s[n] or 5(t), corresponding to the output when x[n] =-

uln] or x(t) = u(t). We will find it useful on occasion to refer to the step response, and
' pulse response. From the convolution-surnt

therefore, it is worthwhile relating it to the im

representation, the step response of a discrete-time LTT system is the convolution of the
unit step with the impiilse response; that is, -

s[n] = u[n] * h[n].

However, by the commutative property of convolutior, s[r] = h[n] * u[n], and therefore,

- 8[n] cani be viewed as the response to the input h[n] of a discrete-time LT] system with
unit impulse response u[n]. As we have seen in Exampile 2.12, u[n] is the unit impulse
response of the accumulator. Therefore, :

sinl = > h[kl. (2.91)

k:—oo

From this equation and from Example 2.12, it is clear that h[n] can be recovered from s[n]
using the relation

h[n] = s[n] = s[n — 1]. (2.92)

That js, the step response of a discrete-time LTI system is the running sum of its impulse
response [eq. (2.91)]. Conversely, the impulse response of a discrete-time LTI system is
~ the first differenc £ of its step response [eq. (2.92)].

Similarly, in continuous time, the step response of an LTI system with impulse re-
sponse A(f) is given by s(f) = u(f) * h(t), which also equals the response of an integra-
tor [with impulse response u(#)] to the input A(f). That is, the unit step response of a
continuous-time LTT system is the running integral of its impulse response, or.

4
() =[ h(ndr, . (2.93)
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and from eq. (2.93), the unit impulse response: is the first derivative of the unj; step re.

sponse,' or’

h(t) = %—(f—) = 5'(1). QY

Therefore, in both continuous and discrete time, the unit step response can also be usedt
characterize an LTI system, since we can calculate t.he unit impulse re]qunse- from it, |,
Problem 2.45, expressions analogous to the conv91utlon sum and convo ution integral g
derived for the representations of an LTI system in terms of its unit step response.

+4 CAUSAL LTI SYSTEMS DESCRIBED BY DIFFERENTIAL
- AND DIFFERENCE EQUATIONS

An extremely important class of continuous-time systems is that for which the input and

output are related through a linear constant-coefficient differential equation. Equations of

-~ this type arise in the description of a wide variety of systems and physical phenomena. For

~ example, as we illustrated in Chapter 1, the response of the RC circuit in Figure 1.1 and

the motion of a vehicle subject to acceleration inputs and frictional forces, as depicted in

- Figure 1.2, can both be described through linear constant-coefficient differential equations.

~ Similar differential equations arise in the description of mechanical systems containing

restoring and damping forces, in the kinetics of chemical reactions, and in many other
contexts as well. : ;

Correspondingly, an important class of discrete-time systems is that for which thein-
put and output are related through a linear constant-coefficient difference equation. Equ-
tions. of this type are used to describe the sequential behavior of many different processes.

-~ For: instance, in Exa;nple 1.10 we saw how difference. equations-arise in describing the
accumulation of.savmg_s in a bank account, and in Example 1.11 we saw how they ¢
be use:d to des_crlbe a digital simula_tion of a continuous-time system described by a dif-
fi?.f;zlrl:tzl- tci:quatlon. lefsrepce equations also arise quite frequently in the specif}cation 0£

e systems designed to perform particular operations on the input signal Fo

ce between successive input values, ?S 12
) : - (1.104) that ¢ value 0
Input over an interval are descri : ) omputes the average

l'I‘hl")“ghout this

bo ;
Analogoys Notation wi]) ok, we will use

g5
: both the AT . givatl¥
also be used for higher deril\li(:tiii:'l:: $ Indicated in eq. (2.94) to denote first de
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2.4.1 Linear Constant-Coefficient Differential Equations

To introduce some of the important ideas concerning systems specified by linear constant-
coefficient differential equations, let us consider a first-order differential equation as in eq.
(1.85), viz.,

% + 2_y(t). = x(t), (2.95)

where y(t) denotes the output of the system and x(¢) is the input. For example, comparing
eq. (2.95) to the differential equation (1.84) for the velocity of a vehicle subject to applied

“and frictional forces, we see that €q. (2.95) would correspond exactly to this system if
y(#) were identified with the vehicle’s velocity v(t), if x(f) were taken as the applied force
f(t), and if the parameters in eq. (1.84) were normalized in units such that &/m = 2 and
1/m = 1.

; A very important point about differential equations such as eq. (2.95) is that they
provide an implicit specification of the system. That is, they describe a relationship be-
tween the input and the output, rather than an explicit expression for the system output
as a function of the input. In order to obtain an explicit expression, we must solve the
differential equation. To find a solution, we need more information than that provided by
the differential equation alone. For example, to determine the speed of an automobile at

- the end of a 10-second interval when it has been subjected to a constant acceleration of
1 m/sec? for 10 seconds, we would also need to know how fast the vehicle was moving at
the start of the interval. Similarly, if we are told that a constant source voltage of 1 volt is
applied to the RC circuit in Figure 1.1 for 10 seconds, we cannot determine what the ca-
pacitor voltage is at the end of that interval without also knowing what the initial capacito
voltage is. '

More generally, to solve a differential equation, we must specify one or more auxil-
iary conditions, and once these are specified, we can then, in principle, obtain an explicit
expression for the output in terms of the input. In other words, a differential equation such
as eq. (2.95) describes a constraint between the input and the output of a system, but to
characterize the system completely, we must also specify auxiliary conditions. Different
choices for these auxiliary conditions then lead to different felationships between the in-
put and the output. For the most part, in"this book we will focus on the use of differential
equations to describe causal LTI systems, and for such systems the auxiliary conditions
take a particular, simple form. To illustrate this and to uncover some of the basic properties
of the solutions to differential equations, let us take a look at the solution of eq. (2.95) for
a specific input signal x(z).

2Our discussion of the solution of linear constant-coefficient differential equations is brief, since we as-
5““_18 that the reader has some familiarity with this material. For review, we recommend a text on the solution of
ordinary differentia] equations, such as Ordinary Differential Equations (3rd ed.), by G. Birkhoff and G.-C. Rota
(New \"urk: John Wiley and Sons, 1978), or Elementary Differential Equations (3rd ed.), by W.E. Boyce and
RC. P1Pﬁma (New York: John Wiley and Sons, 1977). There are also numerous texts that discuss differential
;llgagons in the context of circuit theory. See, for example, Basic Circuit Theory, by L.O. Chua, C.A. Desoer,
cha t.S‘ Kuh (New York: McGraw-Hill Book Company, 1987).. As mentioned in the text, in the fol'lowing
6urp €IS we present other very useful methods for solving linear differential equations that will be sgfﬁcwnt f9r
Hie Prposes. In addition, a number of exercises involving the solution of differential equations are included in

Problems at the end of the chapter.
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Example 2.14 o
++ Consider the solution of eq. (2.95) when the input signal is
b X(t) e Ke:“lu(’). (296)

o is a real number. . ‘
L wherefhffomplete solution to eq. (2.96) consists of the sum of a particular solutioy
yp(D), and a homogeneous solution, yy(t), ie.,

¥(®) = yplt) + yau(0). (.97

where the particular solution satisfies eq. (2.95) and y;(7) is a solution of the homoge.
- neous differential equation

4yt +2y(t) = 0. (2.98)
di

- A common method for finding the particular solution for an exponential input signal as

'~ in eq. (2.96) is to look for a so-called forced response—i.c., a signal of the same fom

s the input. With regard to eq. (2.95), since x(r) = Ke* for t > 0, we hypothesize a
- solution for r > 0 of the form

\ )1’,([) = ’Yc]'. (2.99)
- where Y is a number that we must determine. Substituting eqs. (2.96) and (2.99) into
. eq. (2.95) for t > 0 yields
3Ye +2Yed = ke, (2.100)

'  Canceling the factor ¥ from both sides of eq. (2.100), we obtain
' 3¥Y+2y =g, (2.101)

or
K
Y = 3, (2.102)
so that
K
Yp(t) = §e3’, t>0. (2.109)
In order to determin
€ Y4(t), we hypothesize a solution of the form
Ya(t) = Ae 2104
Substituting thic ; ) .
SUtuting this into eg, (2.98) gives
Ase™ 4+ . r
From this eq M = A1) = g @i

uation, we gee that
(2.98) for any chojce of A. Ui e ;n“s‘ t;.ke $ = =2 and that Ae~ js a solution ¥ d‘;‘;{
€ dlﬂ’erentlal ®Quation for ; >a1(1)d::q (2.103) in eq. (2.97), we find

§€3‘, t>0Q, AL
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Sec. 2.4 Causal LTI Systems Described by Differential and Difference Equations 119

As noted earlier, the differential equat_idn (2.95) by itself does not specify uniqugly the
response y(f) to the input x(#) in eq. (2.96). In particular, the constant A in eq. (2.106)
has not yet been determined. In order for the value of A to be determined, we need to
specify an auxiliary condition in addition to the differential equation (2.95). As explored
in Problem 2.34, different choices for this auxiliary condition lead to different solutions
y(t) and; consequently, to different relationships between the input and the output. As
we have indicated, for the most part in this book we focus on differential and difference
equations used to describe systems that are LTI and causal, and in this case the auxiliary
condition takes the form of the condition of initial rest. That is, as shown in Problem 1.44,
for a causal LTI system, if x(r) = 0 fort < ¢y, then y(f) must also equal O for r < . From
€q. (2.96), we see that for our example x(f) = 0for¢ < 0, and thus, the condition of initial

rest implies that y(t) = 0 for r < 0. Evaluating eq. (2.106) at ¢ = 0 and setting y(0) = 0
yields _

or

. Thus, forz > 0,

y(t) = %[e:” - e'?‘], (2.107)

while for # < 0, y(r) = 0, because of the condition of initial rest. Cdmbining these two
cases, we obtain the full solution

ol =

) = [e“—e'”]u(t). (2.108) .-

Example 2.14 illustrates several very important points concerning linear constant-
coefficient differential equations and the systems they represent. FirSt, the response to
an in[?ut x(t) will generally consist of the sum of a particular solution to the differential
¢quation apd a homogeneous solution—i.e., a solution to the differential equation with the
Input set to zero. The homogeneous solution is often referred to as the naryrgl response

of the system. The natural responses of simple electrical circuits and mechanical systems
are explored in Problems 2.61 and 2.62. )
In Exam

. ple 2.14 we also saw that, in order to determine completely th a
ship between the in pletely the relation

put and the output of a system described by a differential uation

sugh as eq. (2.95), we must specify auxiliary conditions. An implication of t;'u('ls fact
Whlt}h Is illustrated in Problem 2.34, is that different choices of auxiliary conditions leaci
_ :I’ndllfferfent relationships between the input and the output. As we illustrated in the ex
P8, Tor the most part we will use-the condition of initi ibed
by differentis i, of 1nitial rest for systems described

[difteren ations. In the example, since the input was 0 for ¢ < 0; the conditi
‘ ‘Of Initial rest implied the initial condition y(0) = 0. As we have stated, and E’lS illustr]:(theté(;z
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Chab.z
Problem 2.33, under the condition of initial rest thC.SYSter(‘;c;eg)cg;id &1‘2;&-?5) is
and causal.3 For example, if we r(nzulltgél)y the input in eq. (2. 2, ting Oltpy
ice the output in eq. (2. .

womdllj ;;tiwnigzrtant toim'phas%ze that the condition of .mltla]hr_est d.oes. not. specify 5 2
initial condition at a fixed point in time, but rather adjusts this P‘im(t) ‘P time so thy the
response is zero until the input becomes nonzero. Thus, if x(?)<-“ Or I = 1y for the
causal LTI system described by eq. (2.95), then y(t) = 0 for t =< #o, and We would yg,
the initial condition y(t9) = 0 to solve for the output for 1 > fo. As a physical example
consider again the circuit in Figure 1.1, also discussed in Example 1.8. Initial rest fo, this
example corresponds to the statement that, until we connect a nonzero \f.oltage source to the
circuit, the capacitor voltage is zero. Thus, if we begin to use _the circuit .at noon today, the
initial capacitor voltage as we connect the voltage source at noon today is zero. Similarly,
if we begin to use the circuit at noon tomorrow instead, the initial capacitor voltage as we
connect the voltage source at noon tomorrow is zero.

This example also provides us with some intuition as to why the condition of initial
rest makes a system described by a linear constant-coefficient differential equation time
invariant. For example, if we perform an experiment on the circuit, starting from initia]
rest, then, assuming that the coefficients R and C don’t change over time, we would expect
to get the same results whether we ran the experiment today or tomorrow. That is, if we
perform identical experiments on the two days, where the circuit starts from initial rest at
noon on each day, then we would expect to see identical responses—i.e., responses that
are simply time-shifted by one day with respect to each other.

While we have used the first-order differential equation (2.95) as the vehicle for the
discussion of these issues, the same ideas extend directly to systems-described by higher

~order _differ’e’ntial equations. A general Nth-order linear constant-coefficient differential
equation is given by

N k M k
Z."kddﬁt) = > 520 @109

=~
[=]
Fand
Il
o
2
-
-~

The order refers to the highest derivative of the o

‘ utput y(r) appearing in the equation. In
the case when N = 0, eq. (2109) reduces to PP g €q

M
Zbkdkx(t). (2110)

1
¥ = —
: Aoy drt

in t}(I;S lc(;lge, y(t)' is an explicit function of the input x(f) and jts derivatives. For N Z },
o;l.the.e ) specifies the output implicitly in terms of the input. In this case, the analys”
: quation proceeds Just as in our discussion of the first-order differential equaﬁon i

HH1OM Y(8) consists of two parts—a partieutar sotution 10 ¢q. (107

3In fact, as is also
» S| : .« .
if the initia]

In; . Llting
system is incrementally linegy. That is, the g condition for eq. (2.95) is nonzero, the rsesa5
superposition of the response to the init’ial conc.la' r:ll e can be viewed, much as in Figure . ’e iop®*
with an initial condition of g Gic. the respe ;f :)hns alone (with input set 1o 0) and the response 0

€ Causal LTT systemn described by eq. (2.95))-

hown in Problem 2.34,
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plus a solution to the homogeneous differential equation

N’ ko
S My @.111)
P

The solutions to this equation are referred to as the natural responses of the system.

As in the first-order case, the differential equation (2.109) does not completely spec-
ify the output in terms of the input, and we need to identify auxiliary conditions to deter-
mine completely the input-output relationship for the system. Once again, different choices
for these auxiliary conditions result in different input-output relationships, but for the most
part, in this book we will use the condition of initial rest when dealing with systems de-
scribed by differential equations. That is, if x(r) = 0 for r <f, we assume that y(t) = 0
for 1=1y, and therefore, the response for t > ¢, can be calculated from the differential
equation (2.109) with the initial conditions

dy@) _  _d"lyw) _, (2.112)

y(to) = a1 e, = N1

Under the condition of initial rest, the system described by eq. (2.109) is causal and LTL.
Given the initial conditions in eq."(2.112), the output y(¢) can, in principle, be determined
by solving the differential equation in the manner used in Example 2.14 and further illus-
trated in several problems at the end of the chapter. However, in Chapters 4 and 9 we will
“develop some tools for the analysis of continuous-time LTI systems that greatly facilitate
the solution of differential equations and, in particular, provide us with powerful methods
for analyzing and characterizing the properties of systems described by such equations.

2.4.2 Linear Constant-Coefficient Difference Equations

The discrete-time counterpart of eq. (2.109) is the Nth-order linear constant-coefficient
difference equation |

N M
> ayln—k = > bxln—kl. (2.113)
k=0 k=0

An equation of this type can be solved in a manner exactly analogous to that for differential
equations. (See Problem 2.32.)* Specifically, the solution y[n] can be written as the sum
of a particular solution to eq. (2.113) and a solution to the homogeneous equation

N
> apyln—k =0. (2.114)
k=0

4.For a detailed treatment of the methods for solving linear constanircoefficient difference equations,

e nite Dijfere_nce Equations, by H. Levy and F. Lessman (New York: Macmiltan, Inc., 1961), or Finite

C;geience Equations and Simulations (Englewqod Cliffs, NJ: Prentice-Hall, 1968) by F. B. Hildebrand. In

linezl:ri'r 6, We present another method for solving difference equations that greatly facilitates the analysis of

Fo me-invariant systems that are 50 described. In addition, we refer the reader to the problems at the end
I1s chapter that deal with the solution of difference equations.

see Fj
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. . as the natu
The solutions to this homogeneous equation are often referred to ral TeSpongey

described by eq.(2.113). | Ryl g
o the;)ésitzr?heecsc():rlltinuou}sl-ti?ne case, eq. (2.113) does not completely specify the Outpy

in terms of the input. To do this, we must also specify S?mf(:i .al;th(l)lillfi% gfelﬁlit;onst, While
' i ili ditions, leadin PUL-Outpy
there are many possible choices for auxiliary con L g et np;
: ition of initial rest—i.e., if x[n] =
lationships, we will focus for the most part on the f:or! 1t} x[n] <
Befzrl n< :I:)O, thén y[n] = 0 for n < ng as well. With initial rest, the system describeq by
eq. (2.113) is LTI and causal. ‘ ) |
! Although all of these properties can be developed folloyvmg an approach that dj.
rectly parallels our discussion for differential equations, the discrete-time case offe:rs an
alternative path. This stems from the observation that eq. (2.113) can be rearranged in the
form

1 M N
yln] = s ;}bkx[n — k] - ;aky[n - k]] : (2115

Equation (2.115) directly expresses the output at time » in terms of previous values of the '

input and output. From this, we can immediately see the need for auxiliary conditions. In
order to calculate y[n], we need to know y[n—1], ..., y[n — N]. Therefore, if we are given
the input for all » and a set of auxiliary conditions such as y[—N1,.y[-N + 1],..., y[—1],
eq. (2.115) can be solved for successive values of y[n]. '

~ An equation of the form of eq. (2.113) or eq. (2.115) is called a recursive equation,
since it specifies a recursive procedure for determining the output in terms of the input and
previous outputs. In the special case when N = 0, eq. (2.115) reduces to

. |
= (Eh-n @119

k=0

This is the discrete-time counterpart of the continuous-time system given in eq. (2.110).

Here, y[n] is an explicit function of the : : :
’ ; present and previous val . For this
Teason, eq. (2.116) is often called a nonrecy > ues of the input

use previously computed values of the outpu
Therfafore, Just as in the case of the system g
conditions in order to determine
and by direct computation, the i

tto compute the present value of the output
1ven in eq. (2.110), we do not need auxiliary

yln]. Furthermore, eq, (2.116) describes an LTI system™
mpulse response of this system is found to be

h[n]={f’,—;, O<n=pMm

117)
0, otherwise ¢

sum. Note that the impuls® r:c
(_>n1y over a finite time interval. Beca" ¢
Y €q. (2.116) is often called a finite impulse respo™

of this property, th :
(FIR) system.y’ © System specified b
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Example 2.15
‘Consider the difference equation
yln] - 5Y[n =11 = x[n]. (2.118)
Eq. (2.118).can also be expressed in the form
- y[nl = x[n] +§y[n»— Wiesarcingt (2.119)

highlighting the fact that
the current value. Thus,

For example, sup
input.

we need the previous value of the output, y[n — 1], to calculate
to begin the recursion, we need an initial condition.

k[T = Ké[n). S (2.120)
In this case, since x[n] = 0 forn. < — 1, the condition of initial rest implies that y[n] =
0 for n < —1, so that we have as an ‘initial condition y[—1] = 0. Starting from this
ition, we can:solve. for successive values of y[n] for n-= 0 as follows:

‘Since the system specified by eq. (2.118) and the condition of initial rest is LTI, its input-
‘output behavior is completely characterized by its impul§e response. Setting K = 1, we
see that the impulse response for the system considered in this example is

" hln] = (%) uln). | (2.125)

pose that we impose the condition of initial rest and consider the

. yl0]= x»[di??%y[—:ll =K, . 2.121)

om=am+ho=le @122)
y[2] = x[2] + 711 = (5) K, (2.123)

- YIn] = x[n] tizyln = 1] = (5) K i (2.124)

Note that the causal LTI system‘ in Example 2.15 has an impulse response of infinite .

duration. In fact, if N = 1 in eq. (2.113), so that the differ‘ence equation is recursive, it
is usually the case that the LTI system corresponding to this equation together with the
condition of initial rest will have an impulse response of infinite duration. Such systems
are commonly referred to as infinite impulse response (IIR) systems. Y
As we have indicated, for the most part we will use recursive difference equations in
the context of describing and analyzing systems that are linear, time-invariant, and causal,
. and:consequently, we will usually make the assumption of initial rest. In Chapters 5
and 10 we will develop tools for the analysis of discrete-time systems that will provide us
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ethods for solving linear constant-coefficient differ,

: ne
roperties of the systems that they describe. v

with very useful and efﬁcient m
equations and for analyzing the p

resentations of First-Order Systems

2.473 Block Diagram Rep ntial and Difference Equations

Described by Differe

; : linear constant-coefficient difference

An important propertsyicsift;);itct:l?;; dce:rfrtl)ze(riegesented i Ger SipIE ‘G Satuest Wzr;(:
?ﬁff:;?st 1:;1}, g?c:lc:;{:lgli]agram interconngctions ‘of elem_erlta_ryl Oper:;fr;]tZtiIrrili/ ;151 (;Stllgmﬁcant
for a number of reasons. One is that it provides a'plctorla repr n which Can adq
to our understanding of the behavior and properties of these systt‘:ms-l n addition, syc
representations can be of considerable value for the slxmulatlonior 1mp eme.tntatl_on of Fhe
systems. For example, the block diagram representation to be mtrqduced. in this sectio
for continuous-time systems is the basis for early analog computer SJmulatl.ons of systems
described by differential equations, and it can also be directly trapslated into a program
for the simulation of such a system on a digital computer. In addition, the corresponding
representation for discrete-time difference equations suggests simple and efficient ways
in which the systems that the equations describe can be implemented in digital hardware,
In this section, we illustrate the basic ideas behind these block diagram representations |
by constructing them for the causal first-order systéms introduced-in Examples 1.8-1.11.
In Problems 2.57-2.60 and Chapters 9 and 10, we consider block diagrams for systems
des;:ribed by other, more complex differential and difference equations.

We begin with the discrete-time case and, in particular, the causal system described
by the first-order difference equation

ylnl + ay[n — 1] = bx[n]. (2.126) |

To develop a block diagram representation of this s

. stem, note that the evaluation of |
€q. (2.126) requires three basjc Y :

operations: addition, multiplication by a coefficient, and
p between y[n] and y[n — 17), Thus, let us define three

N Y[n] = —ay[n - 11+ bx[n). | (2127
Is algorithm is representeq ictorially in Fj

syst?m, since the output is fe(ll) ba?:ﬁauy e >28, whi
apd 1s then added to bx[n). Th
Sive nature of eq, (2.127).
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Xa[n]
X4[n] ;é > X;[n] + x,[n]
(@)
a
x[n] »

axfn]

(b)

Figure 2.27 Basic elements for
the block diagram representation

of the causal system described by
eq. (2.126): (a) an adder; (b) multi-

] —— D 1)

©) ' “plication by a coefficient; (c) a unit
delay.
| b
e O > yin]
A Y
-

Figure 2.28 Block diagram repre-
-a sentation for the causal discrete-time
— y[n-1] system described by eq. (2.126).

Consider next the causal continuous-time system described by a first-order differen-
tial equation:

%ﬁ—’) + ay(®) = bx() - (2.128)

As a first attempt at-defining a block diagram representation for this system, let us rewrite
it as ‘ '
ldy(t) b
) = —180 0] (2.129)

a dt

The right-hand side of this equation involves three basic operations: addition, multiplica-
tion by a coefficient, and differentiation. Therefore, if we define the three basic network -
elements indicated in Figure 2.29, we can consider representing eq. (2.129) as an inter-
connection of these basic elements in a manner analogous to that used for the discrete-time
system described previously, resulting in the block diagram of Figure 2.30. _

While the latter figure is a valid representation of the causal system described by
- ©q. (2.128), it is not the representation that is most frequently used or the representation
that leads directly to practical implementations, since differentiators are both difficult to
implement and extremely sensitive to errors and noise. An alternative implementation that
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12630ER2 _ .
Xz(t)
: : > x4(t) + Xa(t)
Aty xl e
(@)
a
x(t) —— ax(t) -
(b)
" Figure 2.29 0One possible set of
ek - dx(t) basic elements for the block diagram
X0 > D > Gt representation of the continuous-time
Jsls _ system described by eq. (2.128):
(a) an adder; (b) multiplication by a
© coefficient; (c) a differentiator.

.

— ()
Y
| o | Figure 2.30 Block diagram
‘ representation for the sysiem in
€gs. (2.128) and (2.129), using adders,
1B d!é(tt) multiplications by coefficients, and

differentiators,

is much more widely used can be obtained by first rewriting eq. (2.128) as |

dy) |
“dr T B0 -ay@) e

and then { i oM — '
” (23'; (‘)‘)“fsgr h?;lélﬁl;ﬂ::lresf ttcl)1 L. Spec_l_ﬁcally, if we assume that the system described bY
(since the value of y(—co) ic . en the integra] of dy(t)ldt from —co to ti isely y()
(=) is zero), Cbnsequently We obtain the S t1s prec .
’ =Y uation

S fisgre o
. X0 L, [bx(r) - ay(7)] dr. A @13
In this form, our system ¢ i ‘ Wi i '
i 5 Dt an be impje WG ;
indicated in R Plemented ygjp , jplief
is a block dig 1gure 2.29, tOgetl_ler with an integratorga:h 3 adder. anq coefficient .‘““1"5 3
£ram representation for th;g system lls’ing tEi‘ine,d in Figure 2.31. Figure 2~
~ S ‘tese elements.
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: t
el f | f X()d7  Figure 2.31 Pictorial representation
4 of an integrator.

b
o ——— [ > y0

ﬂ\ Figure 2.32 Block diagram rep-
resentation for the system In €gs.

' (2.128) and (2.131), using adders,
né multiplications by coefficients, and in-
tegrators.

Since integrators can be readily implemented using operational amplifiers, repre-
sentations such as that in Figure 2.32 lead directly to analog implementations, and indeed,
this is the basis for both early analog computers and modern analog computation systems.
Note that in'the continuous-time case it is the integrator that represents the memory stor-
age element of the system. This is perhaps more readily seen if we consider integrating
eq. (2.130) from a finite point in time #;, resulting in the expression

t

¥(&) = y(t0) + J [bx(7) — ay()] d. (2.132)
. . _ ’ 10_ ‘ )

Eqﬁatibri '(2-.132)‘ makes clear the fact that the specification of y(¢) requires an initial con-

dition, namely, the value of y (#p). It is precisely this value that the integrator stores at

time #p.

While we have illustrated block diagram constructions only for the simplest first-
order differential and difference equations, such block diagrams can also be developed for
higher order systems, providing both valuable intuition for and possible implementations
of these systems. Examples of block diagrams for higher order systems can be found in

-

@ Problems 2.58 and 2.60//

25 SINGUIARITY-FUNCTIONS

In this section, we take another look at the con&i{;lous-time unit impulse function in order

' in additional intuitions about this importantidealized signal and to introduce a set of
tions. In particular, in Section 1.4.2
we suggested that a continuous-time unit impulse could be viewed as the idealization of a
pulse that isghort enough” so that its shape and duratiom\s of no practical consequence—
1., so that as fix as the response of any particular LTI system is concerned, all of the area
be thought of as having been applied instantaneously. In this section,
rovide a concrete example of what this means and then use the
ithin the example to show that the key tg the use of unit impulses
and other singularity functidgs is in the specification of how LTI systems respond to these

idealized signals; i.e., the signalg are in essence defined in terms of how they behave under
convolution with other signals. o ’
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