
Course Material on Complex analysis

Cauchy Riemann Equations

The Cauchy Riemann equations can be written in several ways. Given a complex function
f(x, y) = u(x, y) + iv(x, y), to be complex differentiable, we must have the limit of the
drivatives to exist and unique at a given point z0 in the complex plane. This means:

lim
z→z0

f(x, y)− f(x0, y0)

z − z0

= unique and <∞

lim
4x→0

lim
4y→0

f(x0 +4x, y0 +4y)− f(x0, y0)

4x+ i4y
, z = z0 +4x+ i4y (1)

Since the limit should be independent of order we can take the following : 4y → 0 first and
then 4x→ 0 and vice versa and the answer should be independent of order,hence equating
both we obtain at point z0 :

∂u

∂x
=
∂v

∂y
,

∂v

∂x
= −∂u

∂y
(2)

1. Use the above and the fact that x = z+z∗

2
and y = z−z∗

2i
. i.e. a linear transformation to

show for a function satisfying Cauchy Riemann equations we must have:

∂f

∂z∗
= 0 (3)

2. More over show that for a pair of functions which satisfy above, we must have:

∂2u

∂x2
+
∂2u

∂y2
= 0

∂2v

∂x2
+
∂2v

∂y2
= 0 (4)

3. Derive the Cauchy Reimann equations in polar coordintes (r, θ), where we have: r2 =
x2 + y2 and tan θ = y/x.
4. Find the imaginary partof the function :

ln

[
1 + zn

1− zn

]
n ∈ N (5)

5. Given the real part of a function f(z) satisfying Cauchy Riemann equation (called
Holomorphic functions), u(x, y) = e−x(x sin y − y cos y), find the imagibary part v(x, y)
by directly using Cauchy Reimann equations and again by writing the u(x, y) = <[f(z)] =
(f(z) + f(z∗)/2 and hence deducing the form of v(x, y)

Complex Integration

Complex integration is understood as a Riemann integral (splitting the path up into segments
zk+1 − zk), i.e. as an average value of the function over a given curve/path :

lim
n→∞

n−1∑
k=1

f(zk)[zk+1 − zk] =

∫ zn=zb

z1=za

f(z)dz (6)
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6. Show that this can be written as follows :

L lim
n→∞

1

n

n−1∑
k=1

f(zk)e
iθk (7)

Where L is the length of the curve over which the complex integration is performed and
eiθk = [zk+1 − zk]/|[zk+1 − zk]|
7. Using the definiton of the Riemann integral, prove Darboux inquality, which states the
modulus of the value of complex integration over a curve is bounded by the product of the
upper bound of the function over the curve M , and the length of the curve L.
8. Prove Cauchy Integral theorem for a simply connected region, which states that : given
an analytic function f(z) in a closed region R and f ′(z) be continuous in R. Let C be a
simple closed contour in R, then ∮

C

f(z)dz = 0 (8)

A) Using Greens theorem B) By first proving existence of Taylor series from analyticity
and hence using it .
9. Generalize the above for non-simple contours and multiply connected regions.
10. Show that the line integral of a function f(z) between two points lying inside a region
R where f(z) is analytic, is independent of the path.
11. Prove Cauchy’s Integral Formula, which states that: Given a function f(z) which is
analytic inside a simple contour C, the value of the function f(z) at any point z0 in the
interior of C is given by the following contour integral :

f(z0) =
1

2πi

∮
C

f(z)

z − z0

dz (9)

Hence show that :

f (n)(z0) =
n!

2πi

∮
C

f(z)

(z − z0)n+1
dz (10)

12 TAYLOR SERIES : Let a function f(z) be analytic within a circle C of radius R and
with center at z = z0. Then it can be expanded as a series at any point z within C as :

f(z) = f(z0) + (z − z0)f ′(z0) +
(z − z0)2

2!
f ′′(z0) + · · ·+ (z − z0)n

n!
f (n)(z0) + . . . (11)

This is done by performing a series expansion of the denominator of Cauchy’s Integral for-
mula. Also prove the convergence of the series directly.

Non-Analytic functions

Since a closed circular contour C is a domain over which a given complex function has to be
periodic, we must have the Fourier expansion of the function over C as:

f(z0 + riθ) =
∞∑

n=−∞

anr
neinθ (12)
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where z0 is the center of the contour C and r is the radius. Here anr
n are understood as

the Fourier coefficients. If this is true for any r > ε around the point z0, such that the
Fourier series converges (which is an obvious requirement for the Fourier series), then we
have reiθ = z − z0 and the above becomes:

∞∑
n=−∞

an(z − z0)n (13)

It is clear from this generic expansion that there might be a singularity at z = z0 since for
negative n there is a divergence. This leads us to look at Non-analytic functions.

Non-Analytic functions are functions which are either singular at some point z0 on the
complex plane or is not single valued along a curve. These are classified as follows:

a) Isolated singularity : In some region R, if the function f(z) is non-analytic only at a
point i.e. |f(z| <∞ at points z 6= z0 and single valued, and singular only as limz→z0 f(z)→
∞ , then the singularity is called isolated. This is moreover classified into two parts
i) Poles : If the singularity is of finite order i.e. the behaviour of the function around the
singular point is of the following form :

f(z) =
∞∑

n=−N

an(z − z0)n (14)

This is called a pole of order N . More exactly there exists a smallest N such that :

lim
z→z0

(z − z0)Nf(z) <∞ and 6= 0 (15)

This means the above limit is finite and non-zero only for a particular N which the most
divergent term. The examples of these kind are as follows:

1

(z − 1)3
Pole of order 3 (16)

The N = 1 case is called the simple pole and is important due to several reasons as we will
see latter.
ii)If there exists no such N i.e. there is no lower limit for the series above to truncate then
it is called an essential singularity at z = z0 ,

∞∑
n=−∞

an(z − z0)n (17)

We can look at the example :

sin(
1

z
) =

1

z
− 1

3!z3
+

1

5!z5
− . . . series does not truncate (18)
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b) We might also have a situation where the function is not continuous along a curve on
the complex plane , i.e. the limiting value of the function (±ε away from the curve) as we
approach the curve from both sides is not the same. This is called a Branch Cut singularity.
The nature of the Branch cut depends on the pramaterization of the complex plane which
is chosen. Examples of this are as follows:

i) ln(z) for the parametrization − π ≤ θ ≤ π

check that the branch cut is along the negative real axis

ii) ln(z) for the parametrization 0 ≤ θ ≤ 2π

check that the branch cut is along the positive real axis

iii)
√
z2 − 1 for different parametrizations

(19)

13 LAURENT SERIES : Let a function have an isolated singularity at z = z0, enclosed
in a circle C1 : |z − z0| = R1. More over C2 be a circle with center z0 of radius R2 > R1,
such that f(z) is analytic on C1, C2 and within the annular region between C1 and C2. Then
for any z in the annular domain, we have the series expansion of f(z) :

f(z) =
∞∑
n=0

an(z − z0)n +
∞∑
n=1

a−n(z − z0)−n (20)

Where :

an =
1

2πi

∮
C2

f(z)dz

(z − z0)n+1

a−n =
1

2πi

∮
C1

f(z)dz

(z − z0)−n+1

(21)

14 Prove that the Laurent series is unique in a given annular domain.
15 Find the Laurent series of the follwing functions in the region mentioned and state the
kind of singularity:

i)
e2z

(z − 1)3
about z=1

ii)(z − 3) sin
1

z + 2
about z=-2

iii)
z − sin z

z3
about z=0

iv)
z

(z + 1)(z + 2)
about z=-2

v)
1

z2(z − 3)2
about z=3

(22)
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Let us do the last problem, which means we have to find a power series in the parmeter z−3
. To do this we simply use binomial expansion:

1

z2(z − 3)2

=
1

(3 + (z − 3))2(z − 3)2

=
1

(z − 3)29(1 + (z−3)
3

)2

=
1

9(z − 3)2
[1 + (−2)

(z − 3)

3
+

(−2)(−2− 1)

2!

(z − 3)2

32
+ . . . ]

=
1

9(z − 3)2
− 2

27

1

(z − 3)
+

1

27
+ . . . (23)

16 Expand f(z) = 1
(z+1)(z+3)

in a Laurent series valid for the following regions:

a)1 < |z| < 3

b)|z| > 3

c)0 < |z + 1| < 2

d)|z| < 1

(24)

Let us do the first example. This is a annular region bounded by the circles centered around
origin of radius 1 and 3 respectively. Thus we have:

1

(z + 1)(z + 3)

=
1

2

2

(z + 1)(z + 3)

=
1

2

(z + 3)− (z + 1)

(z + 1)(z + 3)

=
1

2(z + 1)
− 1

2(z + 3)

(25)

Now since |z| > 1 we expand the first term in a geometric series as :

1

1 + z

=
1

z(1 + 1
z
)

=
1

z
− 1

z2
+

1

z3
− . . .

(26)
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Agian for the next term we have |z| > 3. Hence we expand it as follows:

1

z + 3

=
1

3(1 + z
3
)

=
1

3
(1− z

3
+
z2

9
− . . . )

(27)

Plugging this two expansions in we have:

· · ·+ 1

2z3
− 1

2z2
+

1

2z
− 1

6
+

z

18
− z2

54
+ . . .

(28)

Please note that although there exists all the power of z here including the negative ones, this
does not mean that there is an essential singularity at z = 0. This is because the expansion
is only valid in the region 1 < |z| < 3 and not outside. Hence the expansion diverges for all
points |z| ≤ 1, and hence this Laurent series can not be continued to the point z = 0.

Cauchy Residue Theorem

Let f(z) be analytic on and within a closed contour C taken anticlockwise except for a finite

set of isolated points z1, z2, . . . , zn at which it is singular with residues : a
(1)
−1, . . . , a

(n)
−1 . Then

: ∮
C

f(z)dz = 2πi
n∑
i=1

a
(i)
−1 (29)

where a
(i)
−1 are the Laurent Series coefficients corresponding to the simple poles (z − zi)−1.

To prove this we choose a multiply connected contour Γ which is composed of C in the
anticlockwise direction and −Ci ( Ci are defined as anticlockwise around the points zi with
radius εi. The minus sign is taken to make it clockwise). Thus this encloses a region where
f(z) is analytic, (note that the region is always to the left of the contour Γ and hence of C
and −Ci). Thus using Cauchy’s Theorem for multiply connected regions, we have:∮

Γ

f(z)dz = 0 =

∮
C

f(z)dz −
n∑
i

∮
Ci

f(z)dz (30)

This means that : ∮
C

f(z)dz =
n∑
i

∮
Ci

f(z)dz (31)
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Now performing Laurent series about each point zi we have:

f(z) =
∞∑

m=−∞

a(i)
m (z − zi)m about the point zi (32)

and plugging it in the integrals:

n∑
i=1

∮
Ci

∞∑
m=−∞

a(i)
m (z − zi)mdz (33)

Now parametrizing z − zi = εie
iθi and hence dz = εiie

iθidθi :

n∑
i=1

∞∑
m=−∞

a(i)
m

∫ 2π

0

εmi e
imθiεie

iθiidθi

=
n∑
i=1

a
(i)
−12πi (34)

where the above integral is zero when m 6= −1 and the only contribution comes from the
m = −1 term. This theorem is of extreme importance since one can do several integrals
simply by using this formula.

Calculation of Residues

If f(z) has a simple pole at z = z0, then we have the Laurent series expansion about that
point as:

f(z) =
a−1

z − z0

+ a0 + a1(z − z0) + . . .

(35)

Hence the coefficient a−1 can be computed as:

a−1 = lim
z→z0

(z − z0)f(z)

= lim
z→z0

(z − z0)[
a−1

z − z0

+ a0 + a1(z − z0) + . . . ]

= lim
z→z0

[a−1 + a0(z − z0) + a1(z − z0)2 + . . . ]

(36)

All the terms apart from the first term go to zero. If f(z) has a pole of order m at z = z0,
then we have the Laurent series :

f(z) =
a−m

(z − z0)m
+ · · ·+ a−1

(z − z0)
+ a0 + a1(z − z0) + . . . (37)

Multiplying by (z − z0)m we have :

f(z)(z − z0)m = a−m + a−m+1(z − z0) + · · ·+ a−1(z − z0)m−1 + a0(z − z0)m + . . . (38)
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Now we take the (m− 1)th derivative :

dm−1

dzm−1
[f(z)(z − z0)m] = 0 + · · ·+ a−1(m− 1)! + a0m!(z − z0) + . . .

(39)

Now if we take the z → z0 we obtain, since the remaining z− z0 dependent terms go to zero
:

lim
z→z0

dm−1

dzm−1
[f(z)(z − z0)m] = a−1(m− 1)! (40)

From the above we can compute a−1. Thus it is one’s choice how to compute the residue,
although performing the Laurent series is the most convenient way to do it.

Additional Theorems - Problems

17. JORDON’ LEMMA : We have semi-circular contour CR, of radius R, in the upper half
complex plane (z = x + iy, y > 0), with center at the origin. Let f(z) be a function that
tends uniformly to zero with respect to θ = arg z as |z| → ∞ for 0 ≤ θ ≤ π. Then for
α ∈ R+ we have :

lim
R→∞

∫
CR

eiαzf(z)dz = 0 (41)

Now the fact that f(z) tends to zero uniformly implies that, for any 0 ≤ θ ≤ π, we have on
CR :

|f(Reiθ| < ε(R) such that lim
R→∞

ε(R)→ 0 (42)

Now let us look at the integral where z = Reiθ , since it is a semi-circle :∫ π

0

iReiθdθf(Reiθ)eiα(R cos θ+iR sin θ)

=

∫ π

0

iReiθdθf(Reiθ)eiαR cos θ−αR sin θ (43)

The modulus of the above integral is obviously less than the integral of the modulus of the
integrand (since then the integrand is always positive and hence there is no cancellation
from elsewhere). This is obviously identical to the trinagle inequality if we interpret it as a
Riemann Integral and write it as a sum. Thus :∣∣∣∣ ∫ π

0

iReiθdθf(Reiθ)eiαR cos θ−αR sin θ

∣∣∣∣ ≤ ∫ π

0

Rdθ|f(Reiθ)|e−Rα sin θ (44)

Now using the limit on |f(Reiθ)|∫ π

0

Rdθ|f(Reiθ)|e−Rα sin θ <

∫ π

0

Rdθε(R)e−Rα sin θ (45)
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Without going into any more rigorous analysis we see that taking the limit R→∞:

lim
R→∞

∫ π

0

Rdθε(R)e−Rα sin θ → 0 (46)

This is because the exponential decays faster than R since in the upper half plane α sin θ > 0,
if ε(R) vanishes smoothly. We will use this lemma in several places to perform complex
integrals.

18. Expand ln

(
1+z
1−z

)
in a Taylor series about z = 0 and check the convergence of the series

by the ratio test :

lim
n→∞

∣∣∣∣un+1

un

∣∣∣∣ < 1 converges

lim
n→∞

∣∣∣∣un+1

un

∣∣∣∣ > 1 diverges

lim
n→∞

∣∣∣∣un+1

un

∣∣∣∣ = 1 inconclusive

(47)

19. The Legendre polynomials Pn(t), n = 0, 1, 2, 3, . . . are given by the Rodrigues’ formula
:

Pn(t) =
1

2nn!

dn

dtn
(t2 − 1)n (48)

Then show that if C is a simple closed curve enclosing the point z = t then :

Pn(t) =
1

2πi

1

2n

∮
C

(z2 − 1)n

(z − t)n+1
dz (49)

Also prove that:

Pn(t) =
1

2π

∫ 2π

0

(t+
√
t2 − 1 cos θ)ndθ (50)

20. Check the convergence of the series :

z

3
+
z(3− z)

32
+
z(3− z)2

33
+
z(3− z)3

34
+ . . . (51)

21. Perform the Taylor series of the following functions and check its domain of convergence:

a)
sin z

z2 + 4
about z = 0

b)e−z
2

sinh(z + 2) about z = 0

c) secπz about z = 1

d)
ez

z(z − 1)
about z = 4i

(52)
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22. Perform the Taylor series expansion of ln(3 − iz) in powers of z − 2i. Choose the
”Principal branch” of the logarithm which means ln z = ln r + iθ + i2nπ and n is taken to
be zero. Cehck the convergence of the series.
23. Find the Laurent series of f(z) = z/(z2 + 1) for |z − 3| > 2 .
24. Find the Laurent series of f(z) = 1/(z − 2)2 for |z| < 2 and |z| > 2.
25. Expand each of the given functions about z = 0, mentioning the type of singularity:

a)
(1− cos z)

z
b)
ez

2

z3
c)z−1cosh

1

z
d)z2e−z

4

e)z sinh
√
z

(53)

26. Find the Laurent series of the following functions about z = 0. Also find all their
singular points and classify the singularities:

a)
1

(2 sin z − 1)2
b) cos(z2 + z−2) (54)

27. Resum the following series in the region where it converges to a function which is well
defined beyond the region of convergence:

a)
1

1 + i

∞∑
n=0

(
z + i

1 + i

)n
b)
∞∑
n=0

zn+1

3n
(55)

This is an example of ”Analytic Continuation”.
28. Prove Cauchy’s inequality which states that if f(z) is analytic inside and on a circle C
of radius r and centre at z = z0 then :

|f (n)(z0)| ≤ M n!

rn
n = 0, 1, 2, . . . (56)

where |f(z)| < M on C.
28. Find the residues of a) f(z) = z2−2z

(z+1)2(z2+4)
and b) f(z) = ezcosec2z at all its poles in the

finite complex plane.
29. Find the residues of cot z cothz

z3
at z = 0

30. Evaluat the following integrasl using residue theorem:

a)

∫ ∞
0

dx

x6 + 1

b)

∫ 2π

0

dθ

a+ b sin θ

c)

∫ ∞
0

xp−1

1 + x
dx 0 < p < 1

d)

∫ ∞
0

ln(x2 + 1)

x2 + 1
dx

(57)
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31. Let us do an example and find the Fourier transform of 1
x2+a2

, where a ∈ R. This is
defined as : ∫ ∞

−∞

(
1

x2 + a2

)
e−i2πxζdx (58)

We do this in two parts : Firstly for ζ < 0. For this we take the following contour Γ which
is composed of two parts : C1 which runs along the real axis from −R to R and C2 which
is a semi circular anti-clockwise contour in the upper half plane, centered at origin and of
radius R. In that case we have :∮

Γ

dz e−i2πζz

z2 + a2
=

∮
Γ

dze−i2πζz

(z + ia)(z − ia)
=

∫
C1

dz e−i2πζz

z2 + a2
+

∫
C2

dz e−i2πζz

z2 + a2
(59)

Evaluating the residue, noting that there is only one pole in the upper half plane at z = ia,
we have: ∮

Γ

dze−i2πζz

(z + ia)(z − ia)

= 2πi
e−i2πiζ(ia)

2ia

=
π

a
e2πζa Note that for ζ < 0, we have ζ = −|ζ|

=
π

a
e−2π|ζ|a (60)

Next look at the contour C2 :∫
C2

dz e−i2πζz

z2 + a2
=

∫ π

0

Rieiθdθe−i2πζ(R cos θ+iR sin θ)

R2e2iθ + a2

=

∫ π

0

Rieiθdθei2π|ζ|R cos θ−2π|ζ|R sin θ

R2e2iθ + a2
(61)

The above goes to zero in the R→∞ limit by Jordon’s lemma since sin θ > 0 in the upper
half plane i.e. 0 ≤ θ ≤ π. Hence the remaining integral over C1 becomes :∫

C1

dz e−i2πζz

z2 + a2
= lim

R→∞

∫ R

−R

dx e−i2πζx

x2 + a2

=

∫ ∞
−∞

dx e−i2πζx

x2 + a2
(62)

which is the integral we needed. Now let us look at the other case : ζ > 0 . In this case the
contour Γ is composed of two parts C1 which is identical to previous case and C3 which is a
semi circular but clock-wise contour in the lower half plane, centered at origin and of radius
R. Thus we have :∮

Γ

dz e−i2πζz

z2 + a2
=

∮
Γ

dze−i2πζz

(z + ia)(z − ia)
=

∫
C1

dz e−i2πζz

z2 + a2
+

∫
C3

dz e−i2πζz

z2 + a2
(63)
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Evaluating the residue and remembering that now the contour is clockwise, and there is only
one pole inside the contour at z = −ia :∮

Γ

dze−i2πζz

(z + ia)(z − ia)

= −2πi
e−i2πi(−ia)

−2ia

=
π

a
e−2π|ζ|a ζ > 0 hence |ζ| = ζ (64)

Next look at the contour C3 :∫
C3

dz e−i2πζz

z2 + a2
=

∫ −π
0

Rieiθdθe−i2πζ(R cos θ+iR sin θ)

R2e2iθ + a2

=

∫ −π
0

Rie−iθdθe−i2π|ζ|R cos θ+2π|ζ|R sin θ

R2e2iθ + a2
(65)

But now this vanishes again in the R → ∞ limit by Jordon’s lemma since sin θ < 0 in the
lower half plane i.e. −π ≤ θ ≤ 0. Hence the remaining integral over C1 again becomes:∫ ∞

−∞

dx e−i2πζx

x2 + a2
(66)

Thus we find the Fourier transform valid for all ζ:∫ ∞
−∞

dx e−i2πζx

x2 + a2
=
π

a
e−2π|ζ|a (67)

32 Show that, if f(z) be analytic inside a closed contour C, except for finite number of poles
inside C, then :

1

2πi

∮
C

f ′(z)

f(z)
dz = N − P (68)

Where N counts the number of zeroes along with multiplicity and P counts the number of
poles with multiplicity.
33 Prove the following identity for a > 0:

1

2πi

∫ a+i∞

a−i∞
ys
ds

s
= 0, 0 < y < 1

= 1, y > 1

(69)

34 If the Fourier transform is interpreted as a contour integral along the imaginary axis then
under the change of variables : t = lnx and ik = s, we have:∫ ∞

−∞
f(t)e−itkdt→

∫ ∞
0

f̃(x)x−s−1dx, wheref(t) = f(lnx) = f̃(x) (70)
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This is called the Melin transform. The inverse Fourier transform becomes:

1

2π

∫ ∞
−∞

f̂(k)eiktdk → 1

2πi

∫ a+i∞

a−i∞
φ(s)xsds, a > 0, wheref̂(k) = f̂(−is) = φ(s) (71)

Where a is the real part of s and is taken greater than zero. In most cases this is just ε
distance away from the imaginary axis, but in some cases where φ(s) has singularities to the
right of the imaginary axis the contour is taken such that the singularities are to the left of
the contour i.e. a > Re[s0], such that lims→s0 φ(s) → ∞. Now use the above to find the
counting function :

jp(x) =
∞∑
n=1

δ(x− pn) (72)

for p ∈ prime .
35. For a function f(z) , which decays as follows |f(z)| ≤ M

|z|k , where k > 1, for some given
constant M , Prove that:

∞∑
n=−∞

f(n) = −(sum of residues of (π cot πz)f(z) at the poles of f(z)) (73)

To do this use a rectangular contour with vertices at (N + 1
2
)(1 + i), (N + 1

2
)(−1 + i), (N +

1
2
)(−1− i), (N + 1

2
)(1− i), evaluate the residues due to poles of cotπz and f(z) and then use

Darboux inquality to show that the contour integral vanishes in the N → ∞ limit, hence
obtaining a relation between the sum of the residues.
36. Hence prove:

∞∑
n=−∞

1

n2 + a2
=
π

a
cothπa, a > 0 (74)

37. Prove the Mittag-Leffler expansion theorem which states that : given a function f(z),
having only simple poles at a1, a2, . . . in the the complex plane with residues b1, b2, . . . at
these points respectively, we can write f(z) as:

f(z) = f(0) +
∞∑
n=1

bn

(
1

z − an
+

1

an

)
(75)

To prove this, a circle of radius R is taken, which does not pass through any of the poles,
on which |f(z)| < M , and then limit R → ∞ is taken. Hint : calculate the residues of
f(ζ)/(ζ − z) first.
38. Given an integral on the real axis with z ∈ C, and x is understood as a limit to the real
axis:

H(z) =

∫ b

a

ρ(x)dx

z − x
(76)
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Find the real and imaginay parts of the above function if z is taken to the limit of a point
in the interval a ≤ z ≤ b. Note that there is a point of singularity in the integral.
39 Now given

H(h) = ln

[
h+ a−

√
(h+ a)2 − bh
c

]
(77)

Find the real and imaginary parts of the above on the real axis, pointing out possible regions
of singularity.
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Course Material on Fourier Transforms

Definition

A periodic function f(x) in the interval [−L,L] can be expanded in a fourier series as follows:

f(x) =
∞∑

n=−∞

cne
inπx
L (78)

This means the fourier coeffiecients can be given as :∫ L

−L
f(x)e−i

mπx
L dx =

∫ L

−L

∞∑
n=−∞

cne
inπx
L e−i

mπx
L = cm2L (79)

Let us rename the fourier coefficient cn as 1
2L
f̂(n/2L) and call n/2L = ζn. Hence:

f̂(n/2L) =

∫ L

−L
f(x)e−i

n2πx
2L dx, f(x) =

∞∑
n=−∞

1

2L
f̂(n/2L)ei

2nπx
2L (80)

Note that 4ζ = ζn+1 − ζn = n+1
2L
− n

2L
= 1

2L
. Therefore:

f̂(ζn) =

∫ L

−L
f(x)e−i2πxζndx, f(x) =

∞∑
n=−∞

f̂(ζn)ei2πζnx4ζ (81)

In the L→∞ limit the sum on the R.H.S. can be interpreted as a Riemann sum and hence
the above becomes (ζn → ζ a continuous parameter):

f̂(ζ) =

∫ ∞
−∞

f(x)e−i2πxζdx⇒ Fourier Transform (82)

f(x) =

∫ ∞
−∞

f̂(ζ)ei2πζxdζ ⇒ Inverse Fourier Transform (83)

Please note the extra factor of 2π in the exponential which is a convention here and an
additional - sign which is different from standard notation.. More over just like fourier series
we have the condition that, the integral

∫∞
−∞ |f(x)|dx <∞, i.e. must converge.

Examples-Theorems

1. From the periodic delta function δ(x−a) =
∑∞

n=−∞
1

2L
ei
nπ
L

(x−a), derive the representation
of the Dirac delta function in the limit 2L → ∞, in the same way as above by replacing
ζn = n

2L
and 4ζ = 1/2L

δ(x− a) =

∫ ∞
−∞

ei2πζ(x−a) (84)
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2. Show that the fourier invers of the delta function δ(x− a) is e−i2πζa.
3. Find fourier transform of the following functions:

a)
δ(x− a) + δ(x+ a)

2

b)
δ(x− a)− δ(x+ a)

2
(85)

4. Show that the Fourier transform of real even function is real and Fourier transform
of real odd function is purely imaginary.

5. CONVOLUTION THEOREM : Inverse Fourier transform of product of two functions
is : ∫ ∞

−∞
f̂(ζ)ĝ(ζ)ei2πζxdζ

=

∫ ∞
−∞

f̂(ζ)

∫ ∞
−∞

δ(ζ ′ − ζ)ĝ(ζ ′)ei2πζxdζdζ ′

=

∫ ∞
−∞

f̂(ζ)

∫ ∞
−∞

∫ ∞
−∞

ei2π(ζ′−ζ)tdt ĝ(ζ ′)ei2πζxdζdζ ′

(86)

where we have introduced the integral representation of the delta function above. Hence:∫ ∞
−∞

∫ ∞
−∞

f̂(ζ)ei2πζ(x−t)dζ

∫ ∞
−∞

ei2πζ
′tĝ(ζ ′)dζ ′ dt

=

∫ ∞
−∞

f(x− t)g(t)dt (87)

We have just used the definition of the Inverse Fourier Transform. Hence Fourier transform
of product of two functions is not the product of the Fourier transforms of the individual
ones. Generalize this for product of any number of functions.
6. PERSEVAL’S THEOREM : This has application in Quantum mechanics, interpreted as
total position space probability = total momentum space probability, as the wave function
can be written in any one of the ”dual-basis”.∫ ∞

−∞
f(x)f ∗(x)dx =

∫ ∞
−∞

f̂(ζ)f̂ ∗(ζ)dζ

(88)

To prove this we observe that :

f(x) =

∫ ∞
−∞

f̂(ζ)ei2πζxdζ (89)

and its complex conjugation is given by (please note that ζ and ζ ′ are dummy integration
variables):

f ∗(x) =

∫ ∞
−∞

f̂ ∗(ζ)e−i2πζ
′xdζ ′ (90)
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Plugging both of them in we have :∫ ∞
−∞

f(x)f ∗(x)dx =

∫ ∞
−∞

∫ ∞
−∞

f̂(ζ)ei2πζxdζ

∫ ∞
−∞

f̂ ∗(ζ)e−i2πζ
′xdζ ′dx

=

∫ ∞
−∞

f̂(ζ)dζ

∫ ∞
−∞

ei2π(ζ−ζ′)xdx

∫ ∞
−∞

f̂ ∗(ζ)dζ ′

=

∫ ∞
−∞

f̂(ζ)dζ δ(ζ − ζ ′)
∫ ∞
−∞

f̂ ∗(ζ)dζ ′

=

∫ ∞
−∞

f̂(ζ)f̂ ∗(ζ)dζ (91)

In Quantum mechanics f(x) plays the role of the particle wave function. More over this
proves that the Fourier transform is a Unitary transformation over the vector space of well
behaved functions, since the ”inner-product” which is the integral here, is left invariant. It
is straight forward to generalize to the case of two different functions :∫ ∞

−∞
f(x)g∗(x)dx =

∫ ∞
−∞

f̂(ζ)ĝ∗(ζ)dζ

(92)

7. DERIVATIVE : From the Inverse Fourier transform, we have :

f(x) =

∫ ∞
−∞

f̂(ζ)ei2πζxdζ

⇒ f ′(x) =

∫ ∞
−∞

f̂(ζ)(i2πζ)ei2πζxdζ

⇒ f (n)(x) =

∫ ∞
−∞

f̂(ζ)(i2πζ)nei2πζxdζ

(93)

Applying the Fourier transform on both side :∫ ∞
−∞

f (n)(x)e−i2πζ
′xdx =

∫ ∞
−∞

∫ ∞
−∞

f̂(ζ)(i2πζ)nei2π(ζ−ζ′)xdx dζ (94)

Then using the representation of the delta function :∫ ∞
−∞

f (n)(x)e−i2πζ
′xdx = f̂(ζ ′)(i2πζ ′)n (95)

8. POISSON SUMMATION FORMULA (Very Important in Number theory and resumma-
tion). For a regular function f(x) we have:

∞∑
n=−∞

f(n) =
∞∑

n=−∞

f̂(n) (96)
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The L.H.S. can be written as :

∞∑
n=−∞

f(n) =

∫ ∞
−∞

f(x)
∞∑

n=−∞

δ(x− n)dx (97)

We observe that the periodic delta function, with period 1 and located at integers, can be
written as:

∞∑
n=−∞

δ(x− n) =
∞∑

m=−∞

ei2πxm (98)

as can be seen, 2L = 1 here and a = 0 from the previous example for the delta function.
Plugging this in we have :

∞∑
n=−∞

f(n) =

∫ ∞
−∞

f(x)
∞∑

m=−∞

ei2πxmdx

(99)

Interchanging the sum and the integral, since the function is regular:

∞∑
m=−∞

∫ ∞
−∞

f(x)ei2πxmdx

(
by definitionf̂(ζ) =

∫ ∞
−∞

f(x)e−i2πζxdx

)

=
∞∑

m−∞

f̂(−m)

now inverting the limit of the sum since the order does not matter if sum is absolutely convergent

=
∞∑

m−∞

f̂(m) (100)

This has several applications in summation and in number theory.

Preliminary Problems

9. Fourier transform of the Gaussian :

f(x) = e−αx
2

(101)

Hence its Fourier transform can be computed as :

f̂(ζ) =

∫ ∞
−∞

e−αx
2

e−i2πζxdx

=

∫ ∞
−∞

e
−αx2−i 2πζx√

α

√
α+(i πζ√

α
)2−(i πζ√

α
)2
dx

=

∫ ∞
−∞

e
−(x
√
α+i πζ√

α
)2−( πζ√

α
)2
dx (102)
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Now we can redefine x
√
α + i πζ√

α
= t. Then

√
αdx = dt. Hence we have:

1√
α

∫ ∞+i πζ√
α

−∞+i πζ√
α

e−t
2

e
−( πζ√

α
)2
dt (103)

Now note that the t integral goes along a line which is parallel to the real axis in the complex
plane with a imaginary shift by +i πζ√

α
, and hence it is not strictly the real axis (let us call

this contour Γ). But now observe that by Cauchy’s theorem, the function e−t
2

is analytic
every where in the complex t plane. Hence one can shift the contour Γ to make it along x
axis to another contour Γ′ which goes from −∞ to ∞. Thus we have:

e
−( πζ√

α
)2 1√

α

∫ ∞
−∞

e−t
2

dt (104)

Now the integral over t can be evaluated using the Gamma function and yields
√
π:√

π

α
e
−( πζ√

α
)2

(105)

This show Fourier transform of the Gaussian is another Gaussian function.
10. Perform the fourier trasform of the function f(x) = e−a|x|.
11. The nth energy eigen function of a quantum Harmonic oscillator satisfies the following
time independent Schrodinger equation (we use ~,m, k = 1):[

− 1

2

d2

dx2
+

1

2
x2

]
φn(x) = (n+

1

2
)φn(x) (106)

Where φn(x) = e−
x2

2 Hn(x), written in terms of the Hermite polynomials. If the momentum
space wave function is defined by the fourier transform :

φ̂n(ζ) =

∫ ∞
−∞

φn(x)e−i2πζxdx (107)

Show that this satisfies the same differential equation with x replaced by 2πζ and hence

φ̂n = cne
− (2πζ)2

2 Hn(2πζ), where cn are just some constants.
12. Perform the Fourier transform of f(x) = sech(x) = 2

eax+e−ax
first directly, where you can

resum the series after the integral by the expansion:

sechz = π

(
1

(π
2
)2 + z2

− 3

(3π
2

)2 + z2
+

5

(5π
2

)2 + z2
− . . .

)
(108)

and again by using Residue theorem.
13. Perform the Fourier transform of the square pulse f(x) = 1, −a ≤ x ≤ a. Hence
perform its inverse to get the pulse back.
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Interpretation and discussion

The Fourier transform just like the fourier series can be interpreted as superposition of waves
of different frequencies. For example we see for the square pulse:

f(x) ∼
∑
ζ

sin 2πζa

πζ
e−i2πζx →

∫ ∞
−∞

sin 2πζa

πζ
e−i2πζx (109)

The term sin 2πζa
πζ

can be interpreted as the amplitude of the wave e−i2πζx. These waves form
an orthogonal basis in an infinite dimensional vector space. Let us remind ourselves the case
for the fourie series :

f(x) =
∞∑

n=−∞

cne
i 2πn

2L
x (110)

Here we have the orthogonal ”vectors” in a countable discrete basis as:∫ L

−L
ei

2π
2L

(n−m)xdx = 2Lδmn (111)

Similarly we have :

f(x) =

∫ ∞
−∞

f̂(ζ)ei2πζxdζ (112)

multiplying both side with e−i2πζ
′x and integrating with respect to x∫ ∞

−∞
f(x)e−i2πζ

′xdx =

∫ ∞
−∞

f̂(ζ)ei2πζxe−i2πζ
′xdζ dx

=

∫ ∞
−∞

f̂(ζ)ei2π(ζ−ζ′)xdx dζ

=

∫ ∞
−∞

f̂(ζ)δ(ζ − ζ ′)dζ

= f̂(ζ ′) (coefficient corresponding to wave ei2πζx) (113)

Hence we have the orthogonal ”vectors” in a continuum basis :∫ ∞
−∞

ei2πζxe−i2πζ
′xdx = δ(ζ − ζ ′)→ limit of 2Lδnm (114)

Hence ei2πζx forms a complete orthonormal basis over space of integrable functions
(
∫∞
−∞ |f(x)|dx <∞).
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Additional Problems

14. Fourier transform of xn . Please not that this is a function which does not satisfy the
integrability condition. We see that:

f̂(ζ) =

∫ ∞
−∞

xne−i2πζxdx

=

∫ ∞
−∞

dn

d(−i2πζ)n
e−i2πζxdx

=

(
i

2π

)n
dn

dζn

∫ ∞
−∞

e−i2πζx

=

(
i

2π

)n
dn

dζn
δ(ζ) (115)

where we have used the representation of the delta function. Obviously the above makes
sense only as a distribution (generalized function) and hence under integration with a smooth
well behaved function.
15. Fourier transform of f(x) = sign(x)

f̂(ζ) =

∫ ∞
−∞

sign(x)e−i2πζxdx

= −
∫ 0

−∞
e−i2πζxdx+

∫ ∞
0

e−i2πζxdx

= −e
−i2πxζ

−i2πζ

∣∣∣∣0
−∞

+
e−i2πxζ

−i2πζ

∣∣∣∣∞
0

=
1

i2πζ
− lim

Λ→∞

ei2πΛζ

i2πζ
− lim

Λ→∞

e−i2πΛζ

i2πζ
+

1

i2πζ

=
1

iπζ
− lim

Λ→∞

1

i2πζ
(ei2πΛζ + e−i2πΛζ) (116)

The last term fluctuates wildly as Λ→∞. Hence integral of any smooth function g(ζ) with
this will give zero as integral will have infinitely many full periods where g(ζ) is sufficiently
constant. Perform the problem again by doing integration by-parts.
16. Perform the Fourier Transform of the Dirac Comb : f(x) =

∑∞
−∞ δ(x− nT )

17. It is easy to generalize to higher dimensions, for example in two dimensions we have:

f̂(ζx, ζy) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)e−i2π(ζxx+ζyy)dx dy (117)

18 Perform the Fourier transform of the Columb potential 1/|~r| in 3 dimensions
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Special Problems

a) Use the Poisson summation formula to show the following :

φ(x) =
∞∑
n=1

e−n
2πx (118)

satisfies the following equation :

2φ(x) + 1 = x−
1
2 (2φ(

1

x
) + 1) (119)

b) Use the above and the fact that :

n−sΓ(
s

2
)π−

s
2 =

∫ ∞
0

e−n
2πxx

s
2
−1dx (120)

To prove the functional equation for the Riemann Zeta function (ζ(s) =
∑

n=1 n
−s):

ζ(s)Γ(
s

2
)π−

s
2 = ζ(1− s)Γ(

1− s
2

)π−
1−s
2 (121)

c) Not from above that if for some ρ = σ + it , ζ(s) = 0, then from the above functional
equation ζ(1− ρ) must also be zero. This means that both ρ = σ+ it and 1− ρ = 1− σ− it
are zeroes of this function. More over if ζ(ρ) = 0 then so is ζ∗(ρ) = ζ(ρ∗), by complex
conjugating the above equation. Thus again σ − it and 1 − σ + it must be zeroes of the
function ζ(ρ). These zeroes are called the ”non-trivial” zeroes of the zeta function. From
the above functional equation, we define ξ(s) = s(s− 1)ζ(s)Γ( s

2
)π−

s
2 and can be written in

terms of the ”non-trivial” zeroes as follows:

s(s− 1)ζ(s)Γ(
s

2
)π−

s
2 = ξ(s) =

∏
ρ

(
1− s

ρ

)
(122)

where the product is over all non-trivial zeroes of the zeta function. Hence use the above
to find the derivative of the summatory von Mangoldt function in terms of the non-trivial
zeroes, which is defined as :

dψ

dx
=
∑
p

ln p
∞∑
n=1

δ(x− pn) (123)

where the sum is over all primes. For this first prove that :

ζ(s) =
∞∑
n=1

n−s =
∏
p

(1− p−s)−1 (124)

Now note that the l.h.s converges for <[s] > 1. Also given is the product form of the Γ
function:

Γ(s) =
1

s
e−γs

∞∏
k=1

(1 +
s

k
)−1e

s
k (125)
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Here γ is the Euler Mascheroni constant.
d) The Riemann Hypothesis states that real part of all the non-trivial zeroes are equal to
1
2

i.e. <[ρ] = 1
2

for all ρ. If we make the change of variable s = 1
1−z then show that the

<[s] = 1
2

line is mapped to the unit circle on the comlex plane z , i.e. |z| = 1 and the entire
right half plane <[s] > 1

2
is mapped to the region inside the unit circle. Hence show that

Riemann Hypothesis is true if we have a sequence of numbers λn > 0 for n = 1, 2, . . . , given
by :

λn
n

=
1

2πi

∮
c

dz

zn+1
ln ξ

(
1

1− z

)
(126)

where c is a counter clockwise contour about the origin.
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