
Deadlock 

Definition: Deadlock is a situation where a set of processes are blocked because each process is 

holding a resource and waiting for another resource acquired by some other process. 

Deadlock can arise if following four conditions hold simultaneously (Necessary Conditions) 

1. Mutual Exclusion 

There should be a resource that can only be held by one process at a time. In the diagram below, 

there is a single instance of Resource 1 and it is held by Process 1 only. 

 

2. Hold and Wait 

A process can hold multiple resources and still request more resources from other processes which 

are holding them. In the diagram given below, Process 2 holds Resource 2 and Resource 3 and is 

requesting the Resource 1 which is held by Process 1. 

 

3. No Preemption 

A resource cannot be preempted from a process by force. A process can only release a resource 

voluntarily. In the diagram below, Process 2 cannot preempt Resource 1 from Process 1. It will only 

be released when Process 1 relinquishes it voluntarily after its execution is complete. 

 

4. Circular Wait 

A process is waiting for the resource held by the second process, which is waiting for the resource 

held by the third process and so on, till the last process is waiting for a resource held by the first 

process. This forms a circular chain. For example: Process 1 is allocated Resource2 and it is 



requesting Resource 1. Similarly, Process 2 is allocated Resource 1 and it is requesting Resource 2. 

This forms a circular wait loop. 

 

 

Deadlock Prevention 

It is very important to prevent a deadlock before it can occur. So, the system checks each 

transaction before it is executed to make sure it does not lead to deadlock. If there is even a slight 

chance that a transaction may lead to deadlock in the future, it is never allowed to execute. 

Deadlock Avoidance 

It is better to avoid a deadlock rather than take measures after the deadlock has occurred. The wait 

for graph can be used for deadlock avoidance. This is however only useful for smaller databases as 

it can get quite complex in larger databases. 

Deadlock Detection 

A deadlock can be detected by a resource scheduler as it keeps track of all the resources that are 

allocated to different processes. After a deadlock is detected, it can be resolved using the following 

methods: 

• All the processes that are involved in the deadlock are terminated. This is not a good 

approach as all the progress made by the processes is destroyed. 

• Resources can be preempted from some processes and given to others till the deadlock is 

resolved. 

(Further we will discuss about deadlock prevention, avoidance, detection and recovery points) 

 


