
Course Name: M.Sc. in Computer Science 
Semester – I, Session: 2019-2021 
Department of Computer Science 

Name of Faculty: Gautam Mahapatra, Associate Professor 

Subject: Advanced Data Structure – Dynamic Programming (DP) 
 
 

Class Taken: 
Date: 7

th
 April 2020, Time: 4.30PM – 6.00PM 

 
Number of Students Attended: 24 / 25 

 
Software used: Zoom 

Internet Service: Jio-Fi 
 

Details of the subject taught: 

 

Dynamic Programming (DP) 

Dynamic Programming or Dynamic Optimization is problem solving technique where any complex problem 

is broken down into a collection of sub-problems (may not be similar type) and these are solved just once 

and stored in memory for reuse, and to save computation next time when the same sub-problem appears in 

the complex problem solution instead of re-computing this stored solution is used. To identify stored 

solution proper indexing is used for each sub-problem. For storing the solution of sub-problems storage 

requirement increases 

 
Example 
Recursive: Top-Down solution for Fibonacci Number 

var m := map(0 → 0, 1 → 1)  

function fib(n)  

 if key n is not in map m  

  m[n] := fib(n − 1) + fib(n − 2)  

 return m[n] 

 

Where „m‟ is a mapping for storage of the results of sub-problems. It is memoization. Here we are using top-

down approach. 

 

Memoization:  

In computing, memoization or memoisation is an optimization technique used primarily to speed 

up computer programs by storing the results of expensive function calls and returning the cached result 

when the same inputs occur again 

In dynamic programming using proper indexing solutions of the sub-problems are stored in direct-accessible 

memory to avoid re-computation and this memorizing technique is called as „Memoization‟. 

In DP Memoization is an important issue and efficiency of DP depends on this.  

 

Steps to Solve Problem using DP 

https://en.wikipedia.org/wiki/Computing
https://en.wikipedia.org/wiki/Optimization_(computer_science)
https://en.wikipedia.org/wiki/Computer_programs
https://en.wikipedia.org/wiki/Subroutine


Step 1: Define sub-problems  

Step 2: Finding recurrences  

Step 3: Solving the base cases 

 

Non-recursive: Bottom – up solution for Fibonacci number 
function fib(n) 

 if n = 0  

 return 0  

else  
 var previousFib := 0, currentFib := 1  

 repeat n − 1 times // loop is skipped if n = 1      

var newFib := previousFib + currentFib  

previousFib := currentFib  

  currentFib := newFib  

 return currentFib 

 

 

 

 

 

 

 

 

Longest Common Substring (LCS): 
 

The Longest Common Substring problem is, given two strings s and t, find the longest substring (contiguous 

characters) that is in both s and t. This has been used to find the similarity between two different genes. Note 

that this is not the same as the Longest Common Subsequence problem, in which characters are not 

necessarily contiguous. 

 

According to the standard framed by World Health Organization (WHO) and the China National Center for 

Disease Control (CNCDC) for the confirmation of the presence of  2019-nCoV virus in the human body the 

Single Strand Positive RNA of the said virus should have the following gene sequence when it is tested 

using the Real-time reverse Transcription Polymerase Chain Reaction (RT-PCR)  or Next Generation 

Sequencing (NGS) techniques:  

Target - 1 (ORFlab-Open Reading Framelab) 

Forward Primer: CCCTGTGGGTTTTACACTTAA 

Reverse Primer: ACGATTGTGCATCAGCTGA 

Probe Reading: 5'-FAM-CCGTCTGCGGTATGTGGAAAGGTTATGG-BHQ1-3' 

Target-2 (Nucleocapsid protein-N) 

Forward Primer: GGGGAACTTCTCCTGCTAGAAT 

Reverse Primer: CAGACATTTTGCTCTCAAGCTG 

Probe Reading: 5'-FAM- TTGCTGCTGCTTGACAGATT-TAMRA-3' 

 

 

As an example, say that s = "tofoodie” and t = “toody”. The longest substring in each is “ood” at three 

characters. There are several substrings of two characters, including “to” and “oo” and “od”. 

 

Solving LCS using Dynamic Programming: 

 

Define sub-problems: 

Let 𝐷  be the length of the LCS of 𝑥 , 𝑥 , … , 𝑥  and 𝑦 , 𝑦 , … , 𝑦 .  

Find the recurrence  

If 𝑥 = 𝑦 , they both contribute to the LCS  

𝐷  = 𝐷   ,   + 1  



Otherwise, either 𝑥  or 𝑦  does not contribute to the LCS, so one can be dropped  

𝐷  = max⁡*𝐷   , , 𝐷 ,   +   

Find and solve the base cases: 𝐷  = 𝐷  = 0 

 

Let D[i,j] be the length of the longest matching string suffix between s1..si and a segment of t between t1..tj.  

If the ith character in s doesn‟t match the jth character in t, then D[i,j] is zero to indicate that there is no 

matching suffix.  

More formally:  

D[i,j] = 0 if s[i] not equal to t[j] Chars don‟t match, so no suffix matches  

D[i,j] =D[i-1,j-1] +1 if s[i] = t[j] Next chars match, so previous matches+1  

If the characters at position i and j do match, then use the number of matches for the strings that don‟t 

include characters i and j, then add one. 

  

Here is the initial table that shows D[0,0]. The columns and rows are zero because there can be no match if 

one of the strings is empty. 

 

 

D[0,0]  T 

(i=1) 

O F O O D I E 

(i=8) 

 0 0 0 0 0 0 0 0 0 

T (j=1) 0         

O 0         

O 0         

D 0         

Y(j=5) 0         

 

Next we fill out D[1,1], D[2,1], D[3,1], etc. to D[8,1]. There is only match at D[1,1] so we fill out its cell with the 
value of D[0,0]+1: 
 

D[0,0]  T 

(i=1) 

O F O O D I E 

(i=8) 

 0 0 0 0 0 0 0 0 0 

T (j=1) 0 1 0 0 0 0 0 0 0 

O 0         

O 0         

D 0         

Y(j=5) 0         

 

Next we fill out the second row, where j = 2. At the first “O” we add one to D*1,1+ and then we also have 
matches at the other O’s which would be matches for an individual character. 
 

D[0,0]  T 

(i=1) 

O F O O D I E 

(i=8) 

 0 0 0 0 0 0 0 0 0 

T (j=1) 0 1 0 0 0 0 0 0 0 

O 0 0 2 0 1 1 0 0 0 

O 0         

D 0         

Y(j=5) 0         

Next we fill out the third row, where j = 3. This row shows several sub-matches, with “O” by itself, and also 
“OO”: 
 

D[0,0]  T 

(i=1) 

O F O O D I E 

(i=8) 



 0 0 0 0 0 0 0 0 0 

T (j=1) 0 1 0 0 0 0 0 0 0 

O 0 0 2 0 1 1 0 0 0 

O 0 0 1 0 1 2 0 0 0 

D 0         

Y(j=5) 0         

 
 
 
 
 
 
Continuing for the rest of the table yields: 

D[0,0]  T 

(i=1) 

O F O O D I E 

(i=8) 

 0 0 0 0 0 0 0 0 0 

T (j=1) 0 1 0 0 0 0 0 0 0 

O 0 0 2 0 1 1 0 0 0 

O 0 0 1 0 1 2 0 0 0 

D 0 0 0 0 0 0 3 0 0 

Y(j=5) 0         

 
To find the longest common substrings we just scan through the table and pick out the entry with the largest 

value. In this case, it is the value 3 and tells us that the previous three characters are a match (OOD). It also gives 

us the matches of length 2, if we‟re interested in those, and the matches of length 1.  

The runtime is Θ(mn) to fill out the table, where m is the length of s, and n is the length of t. 
 

D[0,0]  T 

(i=1) 

O F O O D I E 

(i=8) 

 0 0 0 0 0 0 0 0 0 

T (j=1) 0 1 0 0 0 0 0 0 0 

O 0 0 2 0 1 1 0 0 0 

O 0 0 1 0 1 2 0 0 0 

D 0 0 0 0 0 0 3 0 0 

Y(j=5) 0 0 0 0 0 0 0 0 0 

 

 

Function LCS(X, Y) 

for(i = 0; i <= n; i++) D[i][0] = 0;  

for(j = 0; j <= m; j++) D[0][j] = 0;  

for(i = 1; i <= n; i++) {  

 for(j = 1; j <= m; j++) {  

  if(x[i] == y[j])  

   D[i][j] = D[i-1][j-1] + 1; 

   else  

   D[i][j] = max(D[i-1][j], D[i][j-1]);  

 }  

} 

 

Example: TSP 

Given a weighted graph with n nodes, find the shortest path that visits every node exactly once.  

 

Brute force algorithm takes: 𝑂(𝑛!) 
 



Using DP takes:𝑂(𝑛 2 ) 
 

Define sub-problems:  

Let 𝑓(𝑖, 𝑆) is the length of the optimal path that visits every node in the set S exactly once and ends at 𝑖  

There are approximately 𝑛2  sub-problems  

Return 𝑚𝑖𝑛   𝑓(𝑖, 𝑉) where V is the set of nodes of input graph 𝐺 = (𝑉, 𝐸) 
 

Find the recurrence: 

Consider a path that visits all nodes in S exactly once and ends at 𝑖  
Right before arriving⁡𝑗, the path comes from some 𝑖 in 𝑆 − *𝑗+  
And that sub-path has to be the optimal one that covers⁡𝑆 − *𝑗+, ending at 𝑖  
We just try all possible candidates for 𝑗 

𝑓(𝑖, 𝑆) = 𝑚𝑖𝑛   *𝑐 , + 𝑓(𝑗, 𝑆 − *𝑗+)+ 

Solving Base Cases: 

For each node 𝑖,  𝑓(𝑗,  ) = 𝑐 ,   for all non starting nodes 𝑗 and particular starting node 𝑖.   

Let following C be the cost matrix for a directed graph for we need a minimum cost tour starting from vertex 

1: 





















017119

180148

1015015

1611120

C  

Calculation Steps for DP based solution of TSP 

Step 1: Calculate base cases  ( ,  ) =   , ,      𝒏 

We get  

𝑓(2,  ) = 𝑐 , = 15 

𝑓(3,  ) = 𝑐 , = 08 

𝑓(4,  ) = 𝑐 , = 09 

Step 2: C𝒂𝒍 𝒖𝒍𝒂𝒕𝒆  ( , 𝑺) = 𝒎 𝒏  𝑺*𝑪  +  ( , 𝑺 − * +)+  
For |𝑺| =   

We get 

• 𝑓(2, *3+) = 𝑚𝑖𝑛  * +*𝑐 , + 𝑓(𝑗, 𝑆 − *𝑗+)+ = 𝑚𝑖𝑛  * +*𝑐 , + 𝑓(3, *3+ − *3+)+ = 𝑚𝑖𝑛  * +*𝑐 , + 𝑓(3,  )+ = 𝑚𝑖𝑛  * +*15 + 8+ = 23 

• 𝑓(3, *2+) = 𝑚𝑖𝑛  * +*𝑐 , + 𝑓(𝑗, 𝑆 − *𝑗+)+ = 𝑚𝑖𝑛  * +*𝑐 , + 𝑓(2, *2+ − *2+)+ = 𝑚𝑖𝑛  * +*𝑐 , + 𝑓(2,  )+ = 𝑚𝑖𝑛  * +*14 + 15+ = 29 

• 𝑓(4, *2+) = 𝑚𝑖𝑛  * +*𝑐 , + 𝑓(𝑗, 𝑆 − *𝑗+)+ = 𝑚𝑖𝑛  * +*𝑐 , + 𝑓(2, *2+ − *2+)+ = 𝑚𝑖𝑛  * +*𝑐 , + 𝑓(2,  )+ = 𝑚𝑖𝑛  * +*11 + 15+ = 26 

• 𝑓(2, *4+) = 𝑚𝑖𝑛  * +*𝑐 , + 𝑓(𝑗, 𝑆 − *𝑗+)+ = 𝑚𝑖𝑛  * +*𝑐 , + 𝑓(4, *4+ − *4+)+ = 𝑚𝑖𝑛  * +*𝑐 , + 𝑓(4,  )+ = 𝑚𝑖𝑛  * +*10 + 9+ = 19 

• 𝑓(3, *4+) = 𝑚𝑖𝑛  * +*𝑐 , + 𝑓(𝑗, 𝑆 − *𝑗+)+ = 𝑚𝑖𝑛  * +*𝑐 , + 𝑓(4, *4+ − *4+)+ = 𝑚𝑖𝑛  * +*𝑐 , + 𝑓(4,  )+ = 𝑚𝑖𝑛  * +*18 + 9+ = 27 

• 𝑓(4, *3+) = 𝑚𝑖𝑛  * +*𝑐 , + 𝑓(𝑗, 𝑆 − *𝑗+)+ = 𝑚𝑖𝑛  * +*𝑐 , + 𝑓(3, *3+ − *3+)+ = 𝑚𝑖𝑛  * +*𝑐 , + 𝑓(3,  )+ = 𝑚𝑖𝑛  * +*17 + 8+ = 25 

 

C𝒂𝒍 𝒖𝒍𝒂𝒕𝒆  ( , 𝑺) = 𝒎 𝒏  𝑺*𝑪  +  ( , 𝑺 − * +)+  

For |𝑺| =   

• 𝑓(2, *3,4+) = 𝑚𝑖𝑛  * , +*𝑐 , + 𝑓(𝑗, 𝑆 − *𝑗+)+ = 𝑚𝑖𝑛  * , +*𝑐 , + 𝑓(3, *3,4+ − *3+), 𝑐 , + 𝑓(4, *3,4+ − *4+) + = 𝑚𝑖𝑛  * , +*𝑐 , +

𝑓(3, *4+), 𝑐 , + 𝑓(4, *3+) + 

= 𝑚𝑖𝑛  * , +*15 + 27,10 + 25+ = 𝑚𝑖𝑛  * , +*42,35+ = 35 

• 𝑓(3, *2,4+) = 𝑚𝑖𝑛  * , +*𝑐 , + 𝑓(𝑗, 𝑆 − *𝑗+)+ = 𝑚𝑖𝑛  * , +*𝑐 , + 𝑓(2, *2,4+ − *2+), 𝑐 , + 𝑓(4, *2,4+ − *4+) + = 𝑚𝑖𝑛  * , +*𝑐 , +

𝑓(2, *4+), 𝑐 , + 𝑓(4, *2+) + 

= 𝑚𝑖𝑛  * , +*14 + 19,18 + 26+ = 𝑚𝑖𝑛  * , +*33,44+ = 33 

• 𝑓(4, *2,3+) = 𝑚𝑖𝑛  * , +*𝑐 , + 𝑓(𝑗, 𝑆 − *𝑗+)+ = 𝑚𝑖𝑛  * , +*𝑐 , + 𝑓(2, *2,3+ − *2+), 𝑐 , + 𝑓(3, *2,3+ − *3+) + = 𝑚𝑖𝑛  * , +*𝑐 , +

𝑓(2, *3+), 𝑐 , + 𝑓(3, *2+) + 

= 𝑚𝑖𝑛  * , +*11 + 23,17 + 29+ = 𝑚𝑖𝑛  * , +*34,46+ = 34 

Step 3: Calculate the optimal solution   =  ( ,  − * +) = 𝒎 𝒏    𝒏*  , +  ( , − * ,  +)+  
We get 

• 𝑓 = 𝑓(1, *2,3,4+) 

= 𝑚𝑖𝑛     {𝑐 , + 𝑓(2, *2,3,4+ − *2+), 𝑐 , + 𝑓(3, *2,3,4+ − *3+), 𝑐 , + 𝑓(4, *2,3,4+ − *4+)} 

= 𝑚𝑖𝑛     {𝑐 , + 𝑓(2, *3,4+), 𝑐 , + 𝑓(3, *2,4+), 𝑐 , + 𝑓(4, *2,3+)} = 𝑚𝑖𝑛     *12 + 35,11 + 33,16 + 43+ = m  *47,44,49+ = 44 



 

And path for optimum cost 44 unit is identified as follows:  

• 𝑓 = 𝑓(1, *2,3,4+) = 44 

• 𝑐 , + 𝑓(3, *2,4+)   1  3 

• 𝑐 , + 𝑓(2, *4+) 3  2 

• 𝑐 , + 𝑓(4,  ) 2  4 

• 𝑓(4,  ) = 𝑐 ,  4  1 

• So the path is 1  3  2  4  1 

Example: Chain Matrix Multiplication 

Matrix Multiplication: 

 =    = (𝑐 , )   
  

where  = (  , )   
 and  = (  , )   

 

Time complexity is 𝑂(𝑚𝑛𝑝) 
More than two matrix multiplication as in case of transformation operations on image in Graphics [such as image registration (rotate, translate 

and scaling) – given a particular image which and target image, by these operations iteratively to change input image to target form] called as 

chain matrix multiplication. 

 

Example 1: 

 = (  , )     
,  = ⁡(  , )     

⁡ 𝑛 ⁡ = (𝑐 , )     
 

     = *(   )   ,   (   )+ = {(100  100)  100,  100 + (100  100)} = *1000000,10100+  
So, the second case is less time consuming. 

  

Example 2: 

      𝐷 = *  ((   )  𝐷),   (  (  𝐷)), (   )  (  𝐷), ((   )   )  𝐷, (  (   ))  𝐷+ 
 Different orderings are possible so we need to find the optimum solution. 

 

•  =       …    

 

= *(𝑚 , 
 )

     
 (𝑚 , 

 )
     

 (𝑚 , 
 )

     
 … (𝑚 , 

   )
       

 (𝑚 , 
 )

       
 

=∏(𝑚 , 
 )

       

 

   

 

 

• Chain Matrix multiplication problem can be represented as  = *𝑝 , 𝑝 , … , 𝑝 , 𝑝   + 
 

•   , =         …   , 𝑖  𝑗 

 

Using DP: 

 

𝑓(𝑖, 𝑖) = 0,1  𝑖  𝑛 

𝑓(𝑖, 𝑖 + 1) = 𝑝 𝑝   𝑝   , 𝑘 𝑦(𝑖, 𝑖 + 1) = 𝑖, 1  𝑖  𝑞 

𝑓(𝑖, 𝑖 + 𝑠) = 𝑚𝑖𝑛    (   )*𝑓(𝑖, 𝑘) + 𝑓(𝑘 + 1, 𝑖 + 𝑠) + 𝑝 𝑝   𝑝     +, 𝑓𝑜𝑟 1  𝑖  (𝑛 − 𝑠)  𝑛 1  𝑠  𝑛 

𝑘 𝑦(𝑖, 𝑖 + 𝑠) = 𝑣 𝑙𝑢 ⁡𝑜𝑓⁡𝑘⁡𝑡  𝑡⁡𝑜 𝑡 𝑖𝑛  ⁡𝑓𝑜𝑟⁡  𝑜𝑣 ⁡𝑚𝑖𝑛𝑖𝑚𝑢𝑚 

 

 

Optimal solution 

𝑓 = 𝑓(1, 𝑛) = 𝑓(1,1 + (𝑛 − 1)) = 𝑚𝑖𝑛     *𝑓(1, 𝑘) + 𝑓(𝑘 + 1, 𝑛) + 𝑝 𝑝   𝑝   + 
 

Example: 

•  = *𝑝 , 𝑝 , … , 𝑝 , 𝑝   + = *10,5,1,10,2,10+, 𝑛 = 5 

• So the optimum value 

 𝑓 = 𝑓(1,5) = 𝑚𝑖𝑛     *𝑓(1, 𝑘) + 𝑓(𝑘 + 1,5) + 𝑝 𝑝   𝑝   + 
= m  *𝑓(1,1) + 𝑓(2,5) + 𝑝 𝑝   𝑝   , ⁡𝑓(1,2) + 𝑓(3,5) + 𝑝 𝑝   𝑝   , 𝑓(1,3) + 𝑓(4,5) + 𝑝 𝑝   𝑝   , 𝑓(1,4) + 𝑓(5,5)

+ 𝑝 𝑝   𝑝   + 
= 𝑚𝑖𝑛*𝑓(1,1) + 𝑓(2,5) + 10  5  10, ⁡𝑓(1,2) + 𝑓(3,5) + 10  1  10, 𝑓(1,3) + 𝑓(4,5) + 10  10  10, 𝑓(1,4) + 𝑓(5,5) + 10

 2  10+ 
= m  ⁡*0 + 𝑓(2,5) + 500,50 + 𝑓(3,5) + 100, 𝑓(1,3) + 200 + 1000, 𝑓(1,4) + 0 + 200+ 

 

 𝑓(2,5) = 𝑓(2,2 + 3) = 𝑚𝑖𝑛    (   )*𝑓(2, 𝑘) + 𝑓(𝑘 + 1,5) + 𝑝 𝑝   𝑝     + 

= 𝑚𝑖𝑛*𝑓(2,2) + 𝑓(3,5) + 𝑝 𝑝   𝑝     , 𝑓(2,3) + 𝑓(4,5) + 𝑝 𝑝   𝑝     , 𝑓(2,4) + 𝑓(5,5) + 𝑝 𝑝   𝑝     + 
= m  *𝑓(2,2) + 𝑓(3,5) + 5  1  10, 𝑓(2,3) + 𝑓(4,5) + 5  10  10, ⁡𝑓(2,4) + 𝑓(5,5) + 5  2  10+ 

= m  ⁡*0 + 𝑓(3,5) + 50,50 + 200 + 500, 𝑓(2,4) + 0 + 100+⁡ 
𝑓(3,5) = 𝑓(3,3 + 2) = 𝑚𝑖𝑛    (   )*𝑓(3, 𝑘) + 𝑓(𝑘 + 1,5) + 𝑝 𝑝   𝑝     + 

= 𝑚𝑖𝑛*𝑓(3,3) + 𝑓(4,5) + 𝑝 𝑝   𝑝     , 𝑓(3,4) + 𝑓(5,5) + 𝑝 𝑝   𝑝     + 
= m  *0 + 200 + 1  10  10,20 + 0 + 1  2  10+ = 40 

  



𝑓(2,4) = 𝑓(2,2 + 2) = 𝑚𝑖𝑛    (   )*𝑓(2, 𝑘) + 𝑓(𝑘 + 1,4) + 𝑝 𝑝   𝑝     + 

= 𝑚𝑖𝑛*𝑓(2,2) + 𝑓(3,4) + 𝑝 𝑝   𝑝     , 𝑓(2,3) + 𝑓(4,4) + 𝑝 𝑝   𝑝     + 
= m  *0 + 20 + 5  1  2,50 + 0 + 5  10  2+ = 30 

  

𝑓(2,5) = m  *0 + 𝑓(3,5) + 50,50 + 200 + 500, 𝑓(2,4) + 0 + 100+ 
= m  *0 + 40 + 50,50 + 200 + 500,30 + 0 + 100+ = 90 

 

 

Using similar approaches we get: 

𝑓(1,3) = 150⁡ 𝑛 ⁡𝑓(1,4) = 90 

So the optimum solution of this chain multiplication is: 

𝑓(1,5) = m  *0 + 𝑓(2,5) + 500,50 + 𝑓(3,5) + 100, 𝑓(1,3) + 200 + 1000, 𝑓(1,4) + 0 + 200+ 
= m  *0 + 90 + 500,50 + 40 + 100,150 + 200 + 1000,90 + 0 + 200+ = 190 

 

To know the sequence of multiplication following relations are used: 

  , =         …   , 𝑖  𝑗 

𝑘 𝑦(1,5) =    ⁡     ⁡ 𝑓(1,5) ⁡𝑖𝑠⁡𝑚𝑖𝑛 = 2 

  ,      ,  

𝑓𝑜𝑟⁡  , , ⁡𝑘 𝑦(1,2) = 1 

𝑓𝑜𝑟⁡    , , ⁡𝑘 𝑦(3,5) = 4 

𝑓𝑜𝑟⁡  , =   ,    ,  

𝑓𝑜𝑟⁡  , =   ,    ,  

𝑓𝑜𝑟⁡  , =   ,    ,  

𝑓𝑜𝑟⁡  , =   ,    ,  

 


