CHAPTER 2 0

Homogeneous
and Homothetic
Functions

Chapters 14 and 15 examined the basic properties of differentiable functions. They
showed that a lot of information can be gleaned from the fact that a differentiable
function is well approximated at each point by a linear function. Economists often
work with functions which have other strong properties, such as homogeneity
or convexity. Sometimes, these properties arise naturally for specific functions;
for example, demand functions are naturally homogeneous in prices and income.
Other times, economists make these assumptions in order to prove theorems
about economic models; for example, we can say a lot more about models with
homothetic utility functions or concave profit functions than we can without such
assumptions.

The next two chapters will examine the important properties of special kinds
of functions which arise in economic models. There are two basic categories of
such functions: homogeneous functions and concave/convex functions. Each of
these categories has a cardinal and an ordinal component — concepts that we
will develop in Section 20.4. As we will see, homogeneity and concavity are
cardinal properties; homotheticity is the ordinal analogue of homogeneity and
quasiconcavity is the ordinal analogue of concavity.

Each of these classes are defined without regard to the differentiability of
the function. However, we can and will develop especially strong results for
differentiable functions in each of these categories. In particular, we will prove
simple calculus-based criteria for determining whether or not a given differentiable
function is in any of these classes.

20.1  HOMOGENEOUS FUNCTIONS
Definition and Examples

Homogeneous functions arise naturally throughout economzics. Profit functions
and cost functions that are derived from production functions, and demand func-
tions that are derived from utility functions are automatically homogeneous in the
standard economic models.
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484 HOMOGENEOUS AND HOMOTHETIC FUNCTIONS [20]

Students should be familiar with homogeneous functions from their elemen-
tary algebra courses. For example, a monomial of one variable, y = ax*, is
homogeneous of degree k. A mixture, such as y = x* + 3x, is not homogeneous
at all. ‘

For functions of several variables, a monomial z = axf'x'z‘:xf.f-‘ is homogeneous
of degree k| + k. + ki. Its degree is the sum of the exponents. For example,
z = 8xix» is homogeneous of degree four and z = 3x{x,xj is homogeneous of
degree seven. The sum of monomials of degree k is a homogeneous function of
degree k. The sum of monomials of different degrees is not homogeneous.
Example 20.1
(@) xix» + 3x;x3 + x3 is homogeneous of degree three, since each term is

homogencous of dcgree three.

(b) x]xax3 + 5x8x3 — x3x3 is homogeneous of degree ten, since each term
is homogeneous of degree ten.

(c) 4xix3 — 5x)x3 is not homogeneous since the first term has degree five
and the second has degree three.

(d) A linear function, z = ax; + azx; + - -+ + anx,, is homogeneous of
degree one.

(e) A quadratic form,z = Y a;;x;xj, is homogeneous of degree two.

Thus, one can usually tell whether a specific function is homegeneous just by
looking at its formula. This intuition provides an analytical definition which will
be important in deriving results about homogeneous functions.

Definition For any scalar k, a real-valued function f(xy,..., x,) is homoge-
neous of degree k if

flxy, ..., tx,) = t"f(xl, ..., Xy) forallxy,...,x,and all¢z > 0. 1)

We will usually be working with homogeneous functions defined on the pos-
itive orthant R™. In any case, the domain of a homogeneous function must be a
cone, a set with the property that whenever x is in the set, every positive scalar
multiple ¢x of x is in the set.

Example 20.2 Replacing x1, x;, and x3 by tx), tx,, and tx; respectively in Exam-
ples 20.1a and 20.1b yields
(x1)2(tx2) + 3(ex1)(1x2)? + (tx2)® = 2% 1xy + 3exy %2 + x5
= B(xdxy + 30x2 + x3)
and () (tx2)(txs)? + (161)5(ex2)* + (1x2)(x3)°

= t0]xox? + x$x3 + x3x3).

However, no such relationship exists for Example 20.1c. (Try it!)
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With the above formal definition, we can extend the candidates for homo-
geneous functions beyond the class of polynomials. In particular, we can allow
fractional or negative exponents and quotients of functions.

Example 20.3 The function

filxy, x2) = 3Ox’/2 3/2 Zx?xz_'
i is homogeneous of degree two. The function

folrr, x2) = 225}/ + xlxp

is homogeneous of degree three-quarters. The fractional exponents in these two
examples give one reason for making the restriction ¢ > 0 in the definition of
homogeneous. The function

7 242,85
x; — 3xjx;

4 2,2 4

x} + 2xixs + x5

falxy, x2) =

is homogeneous of degree three (= 7 — 4).

Example 20.4 However, the only homogeneous functions of one variable are
the functions of the form z = ax*, where k is any real number. To prove this
statement, let z = f(x) be an arbitrary homogencous function of one variable.
Let « = f(1) and let x be arbitrary. Then,

flx) = flx-1)= x*f(1) = axk,
Homogeneous Functions in Economics

Economists often find it convenicnt to work with homogencous functions as pro-
duction functions. For example, if ¢ = f(x,...,x,) is a production function
which is homogeneous of degree one, then

flxy, ..., tx,) = tf(xy, ..., xn), 2)

for all inpiit bundles (xy,..., x,) and all ¢ > 0. Taking ¢ = 2, equation (2) says
that if the firm doubles all inputs, it doubles its output too. For ¢ = 3, if it triples
each input, it triples the corresponding output. Such a firm is said to cxhibit
constant returns to scale. Suppose, on the other hand, the production function is
homogeneous of degree k > 1. If such a firm were to double the amount of each
input, its output would rise by a factor of 2%. Since k > 1, its output would more
than double. Such a firm is said to exhibit increasing returns to scale. Finally, a
firm which has a production function that is homogeneous of degree £ < 1, will
have its output increase by a factor less than two when it doubles all its inputs.
Such a firm exhibits decreasing returns to scale.
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A specific homogeneous functional form which economists frequently use as
a production or utility function is the Cobb-Douglas function

= a2 Lyt
g = Ax{"x5* - Xl 3

a monomial with exponents a,, ..., a, that are usually positive fractions. Since
the pioneering work of mathematician C. W. Cobb and economist (and later
U.S. Senator) Paul Douglas in the 1920s, economists interested in estimating the
production function of"a specific firm or industry will often try to find the Cobb-
Douglas production function which best fits the firm’s input-output data. They can
often use linear ordinary least squares techniques since by taking the logarithm
of both sides of function (3), they can work with the log of the output as a linear
function of the logs of the inputs:

logg = logA + a, logx, + -+ + a,logx,.

Notice that a Cobb-Douglas production function exhibits decreasing, constant, or
increasing returns to scale according to whether the sum of its exponents is less
than, equal to, or greater than 1. Economists Wave usually found in their empirical
studies that this sum is very close to 1.

While production functions are often homogeneous by assumption, demand
functions are homogeneous by nature (at least if we ignore the “money illusion”).
Recall that a demand function x = D(py, ..., p,, I) associates to each price vector
p = (1, ..., ps) and income level /, an individual’s most-preferred consumption
bundle x at those prices and income. It is the solution of the basic consumer
maximization problem: x = D(p, /) maximizes U(X) subject to the constraints .
x; = () for all i and

PiXi +'”+puxnsl- (4)

Notice that if all the prices and the consumer’s income tripled, constraint (4) would
not change. We could just divide the new inequality (4) through by 3 to return to
the original inequality. In particular, the optimal consumption bundle x would not
be affected. In terms of the demand function,

D(tpy,...,tpmtIy = D(py,...,ps, 1) forallp,,..., p, 1 (5)

Since 1" = 1, equation (5) states that demand is homogeneous of degree zero in
p and /. Since each individual demand function is homogeneous of degree zero,
the sum of these individual demands, aggregate demand, is also homogeneous of
degree zero. Theorems 22.3 and 22.4-present some specific econoniic principles
that are consequences of the homogeneity of demand functions.

Finally, a similar, straightforward calculation shows that for a firm in a com-
petitive market, the (minimal) cost function is a homogeneous function of 'input
ptices and the optimal profit function is a homogeneous function of output price.
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Properties of Homogeneous Functions

Homogeneity is a rather strong assumption for a production function and especially
for a utility function. We next look at the consequences of choosing a homogeneous
function by answering the following questions:

(1) What can one say about the level sets of a homogeneous function?
(2) What useful analytical properties do homogeneous functions have?

First, we prove a rather intuitive property of differentiable homogeneous func-
tions — that the partial derivatives of a function homogeneous of degree k are
themselves homogeneous of degree k — 1. This property is rather obvious for
homogeneous polynomials. The following theorem proves it for general homoge-
neous functions.

Theorem 20.1 Letz = f(x) be a C' function on an open cone in R". If f
is homogeneous of degree £, its first order partial derivatives are homogeneous
of degree k — 1.

Proof For simplicity of notation, we prove this theorem for éf /dx;. By hypoth-
esis,

fltxy, txg, ..y 1x,) = 5 f(x), X2y 0, Xp). (6)

Think of (6) as an expression in the n+ 1 variables, x,, ..., x,. Hold ¢, x5, .. ., x,,
fixed in expression (6) and take the partial derivative of both sides of (6) with
respect to x;. By the Chain Rule, the result is

of v Of
——(tx), ..., txy) t = ——(x),..., Xn),
axl(xly ) x) (?xl (X] xl)
or, dividing both sides by ¢,
of k-1 Of
—((x) =1t —(X). ]
r9x|( ) ax.()

The basic geometric property of homogeneous functions is a direct conse-
quence of the definition of homogeneous. Let g = f(x) be a production function
that is homogeneous of degree one. In Figure 20.1, we have labeled as x; four
points on the isoquant for {g = 1}. Let w; = 2x; for i = 1,2, 3,4. Since f is
homogeneous of degree one,

fwy) = f(2x) = 2f(x;) = 2.

The w;’s are all on the isoquant {g = 2}. More generally, if we translate each point
x on the isoquant {g = 1} by a factor r along rays from the origin, we generate



Figure
20.1
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the isoquant {g = r}. If f is homogeneous of degree k, then if we translate points
on the isoquant {g = 1} by a factor r along rays from the origin, we generate the
isoquant {g = r¥}, since f(rx) = r*¥f(x) = r* if f(x) = 1. In summary, the level
sets of a homogeneous function are radial expansions and contractions of each
other.

X2

ol
f(2x;) = 2f(x;) = 2 if f is homogeneous of degree one and f(x;) = 1.

One consequence of this observation is expressed in the following theorem.

Theorem 20.2 Let g = f(x) be a C' homogeneous function on the positive
orthant. The tangent planes to the level sets of f have constant slope along each
ray from the origin.

Proof For simplicity, we will prove this theorem for a homogeneous production
function on R% .. Basically we want to show that the marginal rate of technical
substitution (MRTS) is constant along rays from the origin. Let (Lo, Ky) and
(L1, K1) = t(Lo, Kp) be two input bundles on the same ray from the origin, as
illustrated in Figure 20.2. We write f; for df/dL. The MRTS at (L, K;) equals

Sy, K1) _ fi(tho, tKo)
flé(LI; Kl) f[é(tLO) tKO)
= tk _le(Ll)r KO)
tk=1 £l (Lo, Ko)
_ fiLo, Ko)
fx@Lo, Ko)

(by definition of (L1, K1),

(by Theorem 20.1),

(the MRTS at (Lo, K)). -
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The MRTS of a homogeneous function is constant along rays from 0.

Theorem 20.2 has important consequences for utility and production functions.
For example, suppose that U(x) is a homogeneous utility function. Fix prices
at p = (py,..., pn) and fix income at /. Consider once again the problem of
maximizing U(x) subject to the budget constraint pjx +- - -+ p,x, = I,. The usual
geometric solution to this problem is presented in Figure 20.3. At the maximizer
x(lv), the level curve of U is tangent to the budget line. Analytically, at x(/,) the
slope of the level curve (or the marginal rate of substitution), —U; /Uj,, equals
the slope of the budget line, —p,/pa.

X2

hip,

Iy/p,

Iy/py h/p

Bundle x(ly) maximizes utility on the budget set for income I,.

Figure
20.2

Figure
20.3
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Now increase income by a factor of r to I, while holding prices constant.
The corresponding budget line will move out parallel to itself, as in Figure 20.3.
Its slope remains — p, /p,. The solution to the new utility maximization problem
occurs at the point on the new budget line where the marginal rate of substitution
equals —p;/p,. Since the utility function is homogeneous, this point will lie at
the intersection of the new budget line and the ray from the origin through x(/),
as in Figure 20.3, by Theorem 20.2. The parameterized curve f — x(I) in Figure
20.3 that indicates the bundle demanded for different income levels is called the
income expansion path. We have just shown that the income expansion path for
a homogeneous utility function is a ray from the origin.

Since the budget line in Figure 20.3 moved out by a factor r, the new bundle
of choice x(/) is a multiple of the former one by a factor r. Analytically, x(/;) =
x(rlo) = rx(lp). In other words, for a homogeneous utility function of degree &,
the corresponding demand function is a homogeneous function of degree one in
income; doubling income doubles consumption of every good.

The fact that demand as a function of the single variable income is homoge-
neous of degree one in this model means that every component x;(7) of x(/) is
a linear function of income: x;(I) = a;/, by Example 20.4. It follows that each
income elasticity of demand is identically 1, since x; = a;/ implies

dx; 1 I
—'—=a,"—=1.
dl Xi a,~l

Given a production function g = f(x) and a cost C of inputs, the firm wants
to choose the input bundle x that maximizes revenue pf(x), subjecttow* x =< C.
If the production function is homogeneous, the above analysis shows that the
optimal choice of each input is a linear function of cost: x;(C) = a;C. Plugging
these expressions into the homogeneous production function yields

q=4(C) = f(x1(C), ..., xa(C))
= f(a(C,...,a,C) = Ckf(ay,...,a)
= C*a".
Therefore, the cost function —the function that relates input cost and optimal

output — is C(q) = bg'/*, where b = (a*)~'/¥. We summarize the results of this
discussion in the following theorem.

Theorem 20.3 Let U(x) be a utility function on R, that is homogeneous of
degree k. Then,

(i) the MRS is constant along rays from the origin,

(if) income expansion paths are rays from the origin,
(iii) the corresponding demand depends linearly on income, and
(iv) the income elasticity of demand is identically 1.
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Letg = f(x)be a production function on RY that is homogeneous of degree
k. Then,

(i) the marginal rate of technical substitution (MRTS) is constant along
rays from the origin, and

(ii) the corresponding cost function is homogeneous of degree 1/k: C(q) =
bql/k

A Calculus Criterion for Homogeneity

We complete our discussion of homogeneous functions by presenting a calculus
criterion which is a necessary and sufficient condition for a C' function to be
homogeneous. The necessary condition, commonly known as Euler's theorem. is
a useful analytic tool in working with homogeneous functiens. This condition is
related to the fact that when you take the derivative of a monomial, you multiply
its coefficient by the original exponent and then lower the exponent by 1: (ax*)’ =
kax*~1. Therefore,

x(ax*) = k(ax*); thatis, xf'(x) = kf(x).

The following theorem is the n-dimensional version of this result.

Theorem 20.4 (Euler’s theorem) Let f(x) be a C' homogeneous function
of degrce k on R"}.. Then, for all x,

or, in gradient notation,

x - Vf(x) = kf(x).

Proof Sinply differentiate each side of the definition (1) of homogeneous func-
tion with respect to ¢ and then set r = 1:

d _ . of af
— e n = = + oo + — i
If(tx., ) £Xy) | (ex)x, - (tx)x,

%[l"f(x;,...,x,,)] =kt* ' f(xy ..., x)

The two left-hand sides are equal by the definition of homage~eous. Sett = 1
in the two right-hand sides to get the desired result (7).
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Though it is less frequently used, we present the converse of Euler’s theorem
for the sake of completeness. Its proof involves the use of differential equations
and will be presented in the Appendix of Chapter 24.

Theorem 20.5 Suppose that f(xy,..., x,) is a C! function on the positive
orthant R . Suppose that

of f

aJ
x1a(")+ e +X"E(x) =kf(x1,..., Xxn)

for all x in R%,.. Then, f is homogeneous of degree k.

Economic Applications of Euler’s Theorem

A standard application of Euler’s Theorem in economics is the story of “product
exhaustion” for firms with homogeneous production functions. If a firm has a
production function ¢ = f(xy, ..., x,) that is homogeneous of degree one, then
(7) becomes

% %(x) - xn:—i:m - f®) =g ®)

For each input, multiply the amount used, x;, by its marginal product df/dx;, and
sum over all the inputs. The result, according to (8), is the amount of output g. To
understand the implication of (8), suppose the usual profit-maximizing criterion,
namely that the firm pays each factor x; its marginal revenue product p - (8f/dx;),
" so that it hires each factor until the contribution of that factor to the output of the
firm just equals the cost of acquiring additional units of that factor. (See Section
17.5.) Then, the firm’s total payment will be

xp %(x) + -+ xp %(x).

But by equation (8), this is just p- g, the value of the firm’s output. So the revenue of
the firm with a constant-returns-to-scale production function is exactly exhausted
in making payments to all the factors. Such firms make zero economic profit. If
the degree of homogeneity were greater than one, total payments would exceed
the value of output; if the degree were less than one, total payments would be less
than the value of output and the firm would make a positive profit.

As another application of Euler’s theorem, let ¢ = f(xy, x2) be a production
function which satisties:

(1) constant returns to scale: f(¢x) = ¢f(x), and
(2) decreasing marginal product of x,: 3*f/dx? < 0.
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Since f is homogeneous of degree one. its partial derivative df/dx, is homogeneous
of degree zero. Apply Euler’s theorem to 9f/dx;:

0 ()t ()
axy i 3)] ax, © axa \ax )’
if _ _xndf

XA, X2 ox;

or

which is positive since f;,, < 0. This positive cross partial derivative means that
the marginal product of one factor increases when the other factor is increased.
This result is sometimes called Wicksell’s law.

EXERCISES

20.1 Which of the following functions are homogeneous? What are the degrees of homo-
geneity of the homogeneous ones?

a) 3xTv + 207yt = 3ty b) 3y + 2yt — 3x3y?
I A Ak 2y Sy A d) Xy 4 6y,
¢) W 4 er + 4, n (‘ = )

: ( +y )

20.2  Verify Euler’s theorem for the functions in Examples 20.1 and 20.3.
20.3 Prove that the product of homogeneous functions is homogeneous.
20.4 Consider the constant elasticity of substitution (CES) production function F(xy, x;) =

Aan + ax) + ax \")'/" Show that F has constant returns to scale when ay = C.
20.5 If v = f(v,.x:) is C* and homogeneous of degree r, show that

\lf\,\| —‘\I\’f\ A +X‘ Xady = r(r - l)f

20.6 Prove that it f and g are functions on R" that are homogeneous of different degrees,
then f + g is not homogeneous.

20.7 s the zem tunction f(x) = 0 homogeneous? If so, of what degree? How does your
answer relate to the previous exercise?

20.2 HOMOGENIZING A FUNCTION

Homogeneous functions have so many nice properties and arise so naturally in ap-
plications that it is natural to ask whether any arbitrary function can be considered
as the restriction of a homogeneous function that is defined on a higher-dimensional
space. The answer to this question is a definite yes, and the construction is fairly
straightforward.
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Theorem 20.6 Let (x;,...,x,) — f(xy,...,xn) be a real-valued function
defined on a cone C in R". Let & be an integer. Define a new function F of n + 1
variables by

X3 X,
F(xy,...,xn2) = z"-f(—,..‘,—"). 9)
z z
Then, F is a homogeneous function of degree k on the cone C X Ry in R**1,
Since f(x) = F(x, 1) for all x € C, we can consider f as the restriction of F to
an n-dimensional subset of R"*1.

Proof Foranyt € R, and (x,2) € C X Ry,
F(tx, iz) = (2)'f (tlzx) (by the definition (9) of F)
z

=t -z"f(%x)

= (*F(x, 2) (by the definition (9) of F). ®

The converse of Theorem 20.6 is also true. If F is a homogeneous extension
of f, then F and f must be related by (9).

Theorem 20.7 Suppose that (x, z) — F(X, z) is a function that is homoge-
neous of degree k on a set C X R, for some cone C in R" and that

F(x,1) = f(x) forallx € C. (10)

Then, F(x, z) = Zf (%x) for all (x,z) € C X R.

Proof Since F is homogeneous of degree k,

Fid - (e (1x1))

'y 1(3x)  evao). m
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Example 20.5 1If f(x) = x? on Ry, then its homogenization of degree one is
x\¢
=5 (2) =t
=y 7

Example 20.6 If f is the nonhomogeneous function x — x — ax?, then its
degree-one homogenization is

Faon =y-£(3)
Y

-[(2)-(2)]

xZ
=Xx—a—.
y

Economic Applications of Homogenization

If we are given a function f of n — 1 variables and we know that it is the restriction
of some homogeneous function F of n variables, we can use Theorems 20.6
and 20.7 to construct F from f. For example, f might be a production function
that has been estimated using an incomplete list of factors x), ..., x,-;. Suppose
that there is one unestimated factor and that the complete production function
of all n factors is known to have constant returns to scale. By Theorem 20.7,

F(xy,....xp) = Xp* f (X—l cees ?) With this explicit formula for F, one can
n n

compute such things as the marginal product of the hidden factor.

Example 20.7 In a two-factor constant-returns-to-scale production process, an
econometrician estimates that when the second factor is held constant, the
production function for the first factor is fi(x;) = x{ for some a € (0, 1).
Then, the complete production function would be the Cobb-Douglas production
function F(x),x;) = x{x179, as we computed in Example 20.5. If units are
chosen so that x, = 1 during the estimation of f;, then the estimated function
is the restriction fi(x;) = F(x;,1). The marginal product of the hidden factor
x, when x; = 11is

oF s -
-0 =1 —a)xf - x "

8x2 xy=1

=(1-a)f()

in the specially chosen units of x, for which f(x;) = F(x,, 1).
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In consumer theory, we know that demand functions must be homogeneous
of degree zero in all commodities. Suppose, for example, that we are studying a
two-good market, say cookies and milk. Suppose that we calculate the demand
D (p,) for milk in a situation where the price of cookies is held constant. To obtain
the demand function for milk as a function of both prices, we simply homogenize
the milk demand function, using (9) with k = 0:

D(py, p2) = Dy (%)

in units such that p» = 1 in the estimation of D,.

Example 20.8 For example, if the demand function for milk with p, held constant
at p, = 1 is the constant elasticity function Q; = bp, ¢, then the complete
demand function for milk is @, = bp[“p5, a homogeneous function of degree
zero, as it should be.

EXERCISES
20.8 Write the degree-one homogenization of each of the following functions:

a) €, b) Inx, )5 d) xj + x3, e) x} + x3.

20.3 CARDINAL VERSUS ORDINAL UTILITY

As Theorem 20.3 indicates, homogeneous functions have some properties that
make them useful functional forms for utility or production functions. But modern
utility is an ordinal theory, not cardinal. And homogeneity is a cardinal property,
not ordinal. This seetion will clarify the meaning of the concepts cardinal and
ordinal, and will look at the ordinal content of homogeneity. The next section will
look at the larger class of all functions which have these same ordinal properties.
They are called homothetic functions.

A utility function could be said to measure the level of satisfaction associated
with each commodity bundle. However, no economist really believes that a real
number can be assigned to each commodity bundle which expresses (in utils?)
the consumer’s level of satisfaction with that bundle. Economists do believe. that
consumers have well-behaved preferences over bundles and that, given any two
bundles, a consumer can indicate a preference of one over the other or indifference
between the two. Although economists usually work with utility functions, they
are really only concerned with the level sets of such functions, not with the number
which the utility function assigns to any given level set. In utility theory, these
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level sets are called indifference sets, or indifference curves when the level sets
are curves. A property of utility functions is called ordinal if it depends only on
the shape and location of a consumer’s indifference sets. On the other hand, a
property is called cardinal if it also depends on the actual amount of utility that
the utility function assigns to each indifference set.

In this context, we say two functions are equivalent if they have the exact
same indifference sets, although they may assign different numbers to any given
indifference set. For example, let u(x, y) be a utility function on R%. Let v(x, y)
be the utility function u(x, y) + 1. These two functions have the exact same set
of indifference curves. The function v assigns a number one unit larger than the
number that the function u assigns to each indifference curve. For example, the
indifference curve {u = 13} coincides with the indifference curve {v = 14}. The
functions « and v represent the same preferences and are therefore equivalent. As
a second example, the utility function w(x, y) = [u(x, y)]? is also equivalent to u.
If

w(xi, y1) = w(xa, y2) = a, then u(x;, y) = u(xz y2) = a.

To all bundles which w assigns utility 9, u assigns utility 3, and vice versa.
The utility functions « and w have the same indifference curves; they just attach
different numbers to them. If g,(z) = z + 1 and g,(z) = 2%, then we can write
v =gy ouandw = g, o u. We say that v and w are monotonic transformations
of u.

Definition Let/ be an interval on the real line. Then, g : / — R is a monotonic
transformation of / if g is a strictly increasing function on /. Furthermore, if g
is a monotonic transformation and u is a real-valued function of n variables, then
we say that

g o u:x— g(u(x))

is a monotonic transformation of u.

Of course, if g is differentiable, then g is a monotonic transformation if g’(x) >
0 forall x in /. (We could allow such a g to have a zero derivative at isolated points.
For example, 2° is strictly increasing, even though its derivative is zero at z = 0
and positive everywhere else.)

Example 20.9 The functions
3z+2 Z, & and Inz

are all monotonic transformations of R, 4, the set of all positive scalars. Con-
sequently, the utility functions

3xy+2, ()h ()’ +xy, € and Inxy=Inx+Iny (11)

are monotonic transformations of the utility function u(x, y) = xy.
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We can now give a precise definition of an ordinal property.

Definition A characteristic of functions is called ordinal if every monotonic
transformation of a function with this characteristic still has this characteristic.
Cardinal properties are not preserved by monotonic transformations.

Example 20.10 Consider the class of utility functions on R2 that are mono-
mials — polynomials with only one term; for example, the polynomial u(x, y) =
x2y. The utility function v(x, y) = x%y + 1 is a monotonic transformation of
u. As we discussed above, both u and v have the same indifference curves.
However, v is not a monomial. So, being monomial is a cardinal property. We
should be uncomfortable with any theorem which only holds for monomial
utility functions.

Example 20.11 A utility function u(x), x;) is monotone in x, if for each fixed
Xy, u is an increasing function of x,. If u is differentiable, we could write this
property as du/dx, > 0. Intuitively, monotonicity in x; means that increasing
consumption of commodity one increases utility; in other words, commodity
one is a good. This property depends only on the shape and location of the
level sets of u and on the direction of higher utility. Therefore, it is an ordinal
property. Analytically, if g(z) is a monotonic transformation with g’ > 0, then
by the Chain Rule

o [, ) = gt x2) - 2 1) >0

Example 20.12  Because of their preference for ordinal concepts over cardinal
concepts, economists would much rather work with the marginal rate of substi-
tution (MRS) than with the marginal utility (MU) of any given utility function,
because MU is a cardinal concept. For example, if v = 2u,

v, u , . .
E(Xw\';) = 2E(xl’x2)'

Thus, equivalent utility functions have different marginal utilities at the same
bundle. On the other hand, MRS is an ordinal concept. Let v be a general
monotonic transformation of u: v(x, y) = g(u(x, y)). The MRS for v at

EY
&) ) Z—xg(u(X'; "))

%(x-, ») %g(u(x', )
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x ok au * *
g, y") - =" y")
ox

3
g'(u(x*, y*)) - a—;("" y*)
au * *‘
E(x‘ YY)

ou * w),
dy XY

the MRS for u at (x*, y*).

Remark In dealing with production functions, we care a lot about the number
that a production function assigns to any isoquant. The level of output for each
input has full meaning here. In other words, the distinction between cardinal and
ordinal is of no concern when we are speaking about production functions.

EXERCISES

20.9 For each of the five utility functions in (11) in Example 20.9, identify the level sets
which correspond to the level sets {xy = 1} and {xy = 4} of u. For example, the
level set {xy = 1} corresponds to the level set {3xy + 2 = 5}. In each case, convince
yourself that these level curves are indeed identical by finding four bundles on the
level set of xy and showing that these bundles are on the corresponding level sets
of the other five utility functions.

20.10 Show directly that each of the five equivalent utility functions in Example 20.9
have the same marginal rate~ of substitution at the bundle (2, 1). Show that they
have different marginal utilities (0t good one) at (2, 1).

20.11 Which of the following are monotonic transformatiens of R,.?

a) ' + 2, b) 2* - 7, o) z/(z+ 1), d) \fz, e) Vz2 + 4.

20.12 Which of the following functions are equivalent to xy? For those which are, what
monotonic transformation provides this equivalence?

a) ¥y +2, b) Inx +Iny + 1, ) 1y, d) x\By3,

20.13 Use the monotonic transformation z* to prove that every homogeneous function is
equivalent to a homogeneous function of degree one.

20.14 Is having decreasing marginal utility, (62U/dx?) < 0 for all i, an ordinal property?
Why?

20.15 Prove that any function f:R! ~ R! with f’ > 0 everywhere is equivalent to a
homogeneous function of degree one.
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20.4 HOMOTHETIC FUNCTIONS
Motivation and Definition

As we stated at the beginning of the previous section, homogeneity is a cardinal
property, not an ordinal one. We need only one example to verify this, but we
will present two. The functions g1(z) = 2> + z and g2(z) = z + 1 are both
monotonic transformations. However, if we apply these transformations to the
homogeneous function u(x, y) = xy, we obtain the nonhomogeneous functions
v(x, y) = x*y® + xy and w(x, y) = xy + 1.

Nevertheless, as Theorem 20.3 indicates, many of the important properties that
make homogeneous functions so useful in utility theory are ordinal properties:

(1) Level sets are radial expansions and contractions of each other.
(2) The slope of level sets is constant along rays from the origin.

These two properties are clearly ordinal; they pertain only to the shape and
slopes of level curves with no concern at all about the numbers attached to these
level sets. Their consequences for demand theory are described in Theorem 20.3:
Income expansion paths are rays coming out of the origin, and the income elasticity
of demand is everywhere 1.

We now define a class of ordinal functions — a class that has all the ordinal
properties that homogeneous functions have.

Definition A function v: R} — R is called homothetic if it is a monotone
transformation of a homogeneous function, that is, if there is a monotonic trans-
formation z — g(z) of R+ and a homogeneous function u : R}, — R, such that
v(x) = g(u(x)) for all x in the domain.

Example 20.13 The two functions at the beginning of this section,
v, y) =x°y* +xy and w(xy) =xy+1,

are homothetic functions with u(x, y) = xy and with g,(z) = 2> + z and
82(2) = z + 1, respectively. The five examples in Example 20.1 are homothetic
functions.

It should be clear by its definition that homotheticity is an ordinal property. To
prove this analytically, we need to prove that a monotonic transformation of a ho-
mothetic function is still homothetic. Let z— h(z) be a monotonic transformation
and let x — v(x) be a homothetic transformation. We need to check that 4 o v is
homothetic. By the definition of homothetic, v(x) can be written as v(x) = g(u(x)),
where g is a monotonic transformation and z = u(x) is a homogeneous function.
Now

h(v(x)) = h(g(u(x)) = (h o g)(u(x)).
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Since 1 is homogeneous, we need only show that /i o g is a monotonic transfor-
mation. in other words. that a monotonic transformation of a monotonic transfor-
mation is still a monotonic transformatipn.

Let z2 > z;. Since g is strictly increasing, g(z-) > g(z)). Since 4 is strictly
increasing. /1(g(z2)) > /hi(g(z))): that is. ( © g)(z2) > (h o g)(z1). This implies
that /1 o g is a monotonic transformation, and therefore thathov = (ho g)ou
is a monotonic transformation of the homogeneous function u; that is, h o v is
homothetic.

Characterizing Homothetic Functions

This section began with a discussion of the two primary ordinal properties of
homogeneous functions. As we will now see, these properties characterize homo-
thetic utility functions. The key property is the first: level sets are radial expansions
and contractions of one another. Before proving that this property characterizes
homothetic utility functions, we need some definitions that extend the notion of a
monotone function to higher dimensions.

Definition If x,y € R", write

x=y if x;=zyfori=1,...,n,

x>y if x>y fori

I
=
=

A function u: R} — R is monotone if for all x, y € RY,
xZy = ux)= uy)

The function u is stri¢tly monotone if for all x, y € R,
x>y = u(x)> uy).

Monotonicity and strict monotonicity are natural properties of utility functions
in that they capture the essence of the “more is better” aspect of preferences. The
following theorem gives us the promised characterization of homothetic functions.

Theorem 20.8 Let u : R — R be a strictly monotonic function. Then, u is
homothetic if and only if for all x and y in R%,

ux) = u(y) <= u(ax)=u(ay) foralla >0. (12)
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Proof We first show that if u satisfies (12), it is homothetic. Let e denote the
vector (1, 1,.. ., 1), that spans the diagonal A in R". Define function f: Ry — R
by

f(t) = u(re).

Since u is strictly increasing, so is f; and therefore, f has a strictly increasing
inverse g. Let v = g o u. Then,

fov=rogow =(fogou=u

To prove thatu = fov is homothetic, we need only show that v is homogeneous.
For any scalar a, the function a — g(a) tells how far up the diagonal A the

level set u~!(a) meets A. Consequently, v(x) = g(u(x)) tells how far up A the

u-level set through x crosses A. Analytically, ¢ = v(x) is the solution of

u(x) = u(te). (13)
Let a > 0 be a scalar. By (12) and Exercise 20.20,
u(x) = u(te) = u(ax) = u(ate). (14)

But, (14) indicates that at is the solution of (13) with ax replacing x. In other
words, v(ax) = av(x); vis homogeneous of degree one. Since v is homogeneous
and f is increasing, u = f o v is homothetic.

To prove the converse, suppose first that u is linear homogeneous, that is,
homogeneous of degree 1, and that u(x) = u(y)and a > 0. These two properties
yield

u(ax) = au(x)
= au(y)
= u(ay);

so, property (12) holds.

More generally, suppose that u is homothetic, so that u = g; o v, with g,
increasing and v homogeneous of degree k. Write v as g, o h, where ga2(2) = 2*
and h(x) = v(x)!/%. One checks easily that v is homogeneous of degree one
and that g, is increasing, so that we can writc u asu = fo h with f = g; o g1
increasing and A linear homogeneous.
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Once again, suppose u(x) = u(y) and a > 0. Since f is strictly increasing,
it has a strictly increasing inverse f '
f7H ) = £ (),
v(x) = v(y),
v(ax) = av(x) = ar(y) = 1(ay),
flu(ax)) = f(v(ay)).

u(ax) = u(ay):

and so u satisfies property (12). &

- The second ordinal property of homogeneity is that the slope of level sets is
constant along rays from the origin. This property provides a calculus-based nec-
essary condition for homotheticity, just as Euler’s theorem does for homogeneity.

Theorem 20.9 Let u be a C' function on R". If u is homothetic, then the
slopes of the tangent planes to the level sets of u are constant along rays from
the origin; in other words, for every i, j 2nd for every x in R%,

du u
—(x)  —(x)
z?x,- _

ox;
forall: > 0. (15)

ou « du (
— —(x
ox; X ox; )

Theorem 20.9 states that if u is homothetic, then its marginal rate of substitution
is a homogeneous function of degree zero.

Proof The proof is a straightforward combination of the proofs of Theorem 20.2
| and Example 20.12, and will be left as an exercise.

In fact, the converse of Theorem 20.9 is also true. It provides us with a calculus-
based sufficient condition for showing that a given function is homothetic. Some
texts define a function to be homothetic if its marginal rate of substitution is
homogeneous of degree zero. As in the case of the converse to Euler’s theorem,
the proof of the converse to Theorem 20.9, which we omit, involves differential

equations.

Theorem 20.10 Let u be a C! function on R".. If condition (15) holds for all
x in R%, all ¢ > 0, and all j, j, then u is homothetic.
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20.16

20.17

20.19
20.20

EXERCISES

Using the arguments in Example 20.13 and in Exercise 20.13, show that we can
replace “homogeneous” by *“homogeneous of degree one” in the definition of
homothetic.

Werich of the following functions are homothetic? Give a reason for each answer.

a) e, b) 2logx + 3logy, c) xX*y® + 3xy* + 6xy* + 9,
d) x*y + xy, e) x*y*/(xy + 1).

Use Theorems 20.9 and 20.10 to check the homotheticity of the functions in
Exercise 20.17 and to determine whether or not f(x, y) = x* + x?y? + y* —3x — 8y
is homothetic.

Write out a complete, careful proof of Theorem 20.9.

Show that for a strictly monotone function «, the two inequalities in condition (12)
can be replaced without loss of generality by equalities.






