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12.6 Homogeneous Functions

Example 1

Exampie 2

Example 3

A function is said to be homogencous of degree #, if multiplication of each of its indepen-
dent variables by a constant j will alter the value of the function by the proportion ;”, that
is, 1f

_fr(j)f], cery j'.l‘”) = j’:)“(x[, Ceea x”)

In general, j can take any value. However, in order for the preceding equation to make
sense, {fxy, ..., jx,) must not he outside the demain of the function /. For this rcason, in
econemic applications the constant J is usually taken to be positive, as most economic vari-
ables do not admit negative values,

Given the function f(x, y, w) = x/y + 2w/3x, if we multiply each variable by j, we get

(x)  2(jw) _x 2w _ 0
m"‘?’(jx)"—y-"gx—f(xfyrw)_jf(x.'y:w)

In this particutar example, the value of the function will not be affected at all by equal pro-
portionate changes in all the independent variables; or, one might say, the value of the
function is changed by a multipie of j° (= 1). This makes the function f a homogeneous
function of degree zero,

f(jx, f.yr J’W) =

You will observe that the functions x* and v* cited at the end of Sec. 12.5 arc hoth
homogeneous of degree zero.

When we multiply each variable in the function

(x W}_x2+2w2
o=
by j, we get
o (R 2(;'w)2‘_,(x_2 2w2)__
gljx, fy, jw) = ) + AT 0 = jolx, y, w)

The function g is homogeneous of degree one (or, of the first degree); muitiplication of
each variable by j will alter the value of the function exactly jfold as well.

Now, consider the function h(x, ¥, w) = 2x2 + 3yw — w2, A similar multiplication this time
will give us

Hjx, jy, jw) = 20130 430700 w) — (Gw)? = [2h(x, v, w)

Thus the function h is homogeneous of degree two; in this case, a doubling of all variables,
for example, will quadruple the value of the function.

Linear Homogeneity

In the discussion of production [unctions, wide use is made ol homogeneous functions of
the first degree. These are often referred to as fincarly homogeneous functions, the adverb
linearly madifying the adjective homageneous. Some writers, however, scem to prefer
the somewhat misleading terminology linear homogeneous functions, or even linear and
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homogencous functions, which tends to convey, wrongly, the impression that the functions
themselves are linear. On the basis of the function g in Example 2, we know that a function
which is homogeneous of the first degree is not necessarily lincar in 1tsclf. Hence you
should avoid using the terms “lincar homogeneous functions™ and “linear and homoge-
neous functions™ unless, of course, the functions in question are indeed lincar. Note, how-
cver, that it is not incorrect fo speak of “linear homogeneity,” meaning homogeneity of
degree one, because to modify a noun (homogeneity) does call for the use of an adjective
(linear).

Since the primary field of application of linearly hemogencous functions 13 in the theory
of production, lct us adopt as the framework of our discussion a production function in the
form, say,

Q= f(K, 1) (12.45)

Whether applied at the micro or the macro level, the mathematical assumption of lincar ho-
mogeneity would amount to the economic assumption of constant returns to scalc, because
linear homogeneity means that raising all inputs (independent variables) j-fold will always
raise the output {value of the fonction) exactly j-fold also.

What unique properties characterize this linearly homogeneous production function?

Property I Given the lincarly homogeneous production function 0 = f(X, L), the aver-
age physical product of labor (APP; ) and of capital (APPx ) can be expressed as functions
of the capital-labor ratio, £ = K /7., alone.

To prove this, we multiply cach independent variable in {12.45) by a factor j = [/L. By
virtue of linear homogeneity, this will change the output from ¢ to jQ = O/L. The right
side of (12.45) will correspondingly become

HK L (K \
f(zqz)z_f‘(rpl)—f(r’(-])

Since the variables K and L in the original function are to be replaced (whenever they
appear) by k and 1, respectively, the right side in cffect beccomes a function of the
capital-labor ratio & alone, say, ¢(k), which is a function with a single argument, &, cven
though two independent variables K and Z are actually involved in that argument, Equating
the two sides, we have

APP; = % = ¢(k) (12.46)
The expression for APPg is then found to be
0 QL ¢k
APPy == == _ =" 47
Pk T L (12.47)

Since both average products depend on & along, linear homogeneity implies that, as long
as the K /L ratio is kept constant {whatever the absolute levels of K and 1), the average
products will be constant, toe. Therefore, while the production function is homogeneous of
degree one, both APP;, and APPx arc homogeneous of degree zero in the variables K and
L, since equal proportionate changes in K and L {maintaining a constant k) will not alter the
magnitudes of the average products.
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Property 11 Given a linearly homogeneous production function @ = f(K, L), the mar-
ginal physical products MPP; and MPP, can be expressed as functions of & alone.

To find the marginal products, we first write the total product as
O =L¢(k)  [by(12.46)] (12.45)

and then differentiate () with respect to X and L. For this purpose, we shall find the follow-
ing two preliminary results to be of service:

ok (K)zj_ 9 (5)=‘*' (12.48)

9K Ak \NL/) L 8L 3L\l 12
The results of differentiation are
aQ g
MPPy = = = —[Lé(k
K= op =3 K[ k)]
= LM = LM ﬁ [chain rule]
dK dk oK
1 , ,
= Lg'(k) (E) = ¢'(k) [by(12.48}] (12.49)
a0 i
MPP) = — = —
L=2T aL[qu(k)]
aa(k
=¢(h)+ L fﬁﬁ ) [product rule]

oy 0K .
=¢lk)+ Lo (k)BT [chain rulc]

= g+ Lg'(H)
= ¢lk) — k¢'(k) (12.50)
which mdced show that MPPg and MPP; are functions of & alone.
Like average products, the marginal products will remain the same as long as the

capital - labor ratio is held constant; they arc homogeneous of degree zeto in the variables £
and L.

[by {12.48)]

Property LIl (Euler’s theorem) If 0 = f(X, L) is linearly homogeneous, then

aq a0
K—+1 ==
dK + al Q
ProGr

AN K" (k) + L{p(k) — k¢'(K)] [y (12.49), (12.50)]

aK aL
= K¢'(k) + Lo(k) — K¢'(k) [k=K/L]
=Lk =0 [by (12.459]

Note that this result is valid for any valucs of K and £; this is why the property can be
written as an identical equality. What this property says is that the value of a linearly
homogeneous function can always be expressed as a sum of terms, each of which is the
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product of one of the independent variables and the first-order partial derivative with

respect to that variable, regardless of the levels of the two inputs actually employed. Be
d 3

careful, however, to distinguish between the identity X £ + Lg = { [Luler’s thearem,

which applics only to the constant-returns-to-scale case of = (K, L)] and the equation
dQ = %dk’ + %d}: ltotal differential of O, for any function @ = f{X, L)].
Economically, this property means that under conditions of constant returns to scale, 1f
each input factor is paid the amount of its marginal product, the total product will be
exactly exhausted by the distributive shares for all the input factors, or, equivalently, the
pure economic profit will be zero. Since this situation is descriptive of the long-run equi-
librium under pure competition, it was once thought that only linearly homogeneous pro-
duction functions would make sense in economics. This, of course, is not the case. The zero
economic profit in the long-run equilibrium is brought about by the forces of competition
through the entry and exit of firms, regardless of the specific nature of the productian func-
tions actually prevailing, Thus it is not mandatory to have a production function that
ensures product exhaustion for any and all (X, L} pairs. Moreover, when imperfect compe-
tition exists in the factor markets, the remuneration Lo the factors may not be equal to the
marginal products, and, consequently, Euler’s theorem becomes irrelevant to the distribu-
tion picture. However, linearly homegeneous production functions are oficn convenient to
work with because of the various nice mathematical properties they ate kngwn to possess.

Cobb-Douglas Production Function
One specific production function widely used in economic analysis (earlier cited in
Sec. 11.6, Example 5) is the Cobb-Douglas production function:

Q= AK*L™™ (12.51)

where A is a positive constant, and o is 4 positive fraction. What we shall consider here first
is a generalized version of this function, namely,

0 =AK*L? (12.52)

where § is another positive fraction which may or may not be equal to | — . Some of the
major features of this function are: {1) it is homogeneous of degree (& + 8): (2) in the spe-
cial case of & + B = 1, it is linearly homogencous; (3) its isoquants arc negativcly sloped
throughout and strictly convex for positive values of X and Z; and (4) it is strictly quasi-
concave for positive K and L.

Tts homogeneity is easily seen from the fact that, by changing K and £ to jK and jL,
respectively, the cutput will be changed to

AGKY (LY = j*PARY Py = j*PQ

That is, the function is homogeneous of degree (¢ + 8). In case @ + f = 1. there will be
constant returns to scale, because the function will be linearly homogencous. (Note, how-
ever, that this function is not lingar! It would thus be confusing to refer (o it as a “finear
homogeneous” or “linear and homogeneous” function.) That its isoquants have negative
slopes and strict convexity can be verified from the signs of the derivatives dK /dL and
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2K /dL? (or the signs of 4L /dK and d*L/dK?). For any positive output O, (12.52)
can be written as

AK®LP = 0y (A, K. L, Q¢ >0
Taking the natural log of both sides and transposing, we find that
Ind+aelhX +4Inf, —InQy =0

which implicitly defines X as a function of L. By the implicit-function rulc and the log
rule, therefore, we have
dK oK/l (/L)  BK

- = = =—"— <0
dl dFfOK (/K ol

Then it follows that

K d { BK 8d (K B 1 [ dK

—_—=—|—— == )=———=(L— K| =0

dL? dL( a-‘L) aa’L(L) aLZ( dL )
The signs of these dertvatives establish the isoquant (any isoquant) to be downward-sloping
throughout and strictly convex in the LK plane for positive values of K and £. This, of
course, is only to be expected [rom 4 function that is strictly quasiconcave for positive XK
and L. For the strict quasiconcavity feature of this function, sec Txample 5 of Sec. 12.4,
where a similar function was discussed.

Let us now examine the & + f = 1 case (the Cobb-Douglas function proper), to verify

the three properties of linear homogencity cited earlier. First of all, the total product in this
special casc 1s expressible as

K iy
Q= AK“L'"™" = 4 (E) L =LA (12.51

where the expression A&“ 1s a specific version of the general expression ¢ (k) used before.
Therefore, the average products are

arp =2 e
(12.53)
L Ak
APPK:Q=Q_: :Aku_]
K LK k

both of which arc now functions of 4 alone.
Second, differentiation of Q = 4K“L~ yiclds the marginal products:

a K\
5% = de KL - 4y (E) = Aak®!
3 (12.54)
aQ—AK“l 1LY = A(] s = A(l —a)k”
37 = (1 -« = ) )= (1 —a

and these are also functions of 4 alone.

' The conditions of the implicit-function thearem are satisfied, because £ (the left-side expression} has
continuous partial derivatives, and because 8F /3K = /K # 0 for positive values of K.
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Last, we can verify Euler’s theorem by using (12.54) as follows:

3 i
K,—Q 299 Kawk 4 a1 — e

sk UL
_rae (B2
— Lk ¥
LA+ —a) = LA =0 [y (12.517)]

Interesting economic meanings can be assigned to the exponents ¢ and {1 — «) in the
linearly homogencous Cobb-Douglas production function. 1f each input is assumed to be
paid by the amount of its marginal product, the relative share of total product accruing to
capital will be

K(3Q/8K)  Kdak®™

0 Lk
Similarly, labor’s relative share will be
LAQ/L) _ LA(I —a)k*
= = | -

0 LAk®

Thus the exponent of each input variable indicates the relative share of that input in the
total product. Looking at it another way, we can also interpret the exponent of cach input
variable as the partial elasticity of output with respeet to that input. This is because the
ag /oK
g/K

capital-share expression just given is cquivalent to the expression = ggx and,

similarly, the labor-share expression just given is precisely that of £¢, .

What about the meaning of the constant 4? For given values of K and L, the magnitude
of 4 will proportionately affect the level of Q. Hence A may be considered as an efficiency
parameter, 1.€., as an indicator of the state of technology.

Extensions of the Results
We have discussed linear homogeneity in the specific context of production functions, but
the properties cited arc equally valid in other contexts, provided the variables K, L, and {J
arc properly reinterpreted.

Furthermore it is possible to extend our results to the case of more than two variables.
With a lincarly homogeneous function

v=flxi, %2, .., %)
we can again divide each variable by x, (that is, multiply by 1 /x1} and get the resuit
¥ =x¢ (X_z x—j, e E) [homogeneity of degree 1]
X1 X kg

which is comparable to (12.45"). Morcover, Euler’s theorem is ¢asily extended to the form

Zx;j} =y [Eulet’s theorem]

=1
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where the partial derivatives of the original function f(namely, £;} arc again homogencous
of degree zero in the variables x;, as in the two-variable case.

The preceding extensions can, in fact, also be gencralized with relative ease to a homo-
geneous function of degree r. In the first place, by definition of homogeneity, we can in the
present case write
X1 X3 Xn

y:x{tﬁ( \

, ) [homogeneity of degree 7]
£ X X

The modified version of Euler’s theorem will now appear in the form
H

Z xh=ry [Euter’s theorem]

i=l
where a multiplicative constant » has been attached to the dependent variable y on the right.
And, finally, the partial derivatives of the original function f, the f;, will all be homoge-
neous of degree (» — 1) in the variables ;. You can thus sce that the lincar-homogeneity
case is merely a speeial case thereof, in whichr = 1.

EXERCISE 12.6

1. Determine whether the following functions are homogeneous. if so, of what degree?

(@) f(x, y) = Jxy (@) f(x, ) =2x + y+ 3./%F
2

(B) F(x, 1) = (<2 = )12 (@ 100,y W) = Lo 4 21w
© fex P=xP—xy+y () F(x, y, w) = x* = Syw?

2. Show that the function (12.45) can be expressed aiternatively as Q = K. (1,—) instead
of Q= L¢ (::'.i) .

3. Deduce from Euler's theorem that, with constant returns to scale:
{@ When MPPg =0, APP; is equal to MPP;.
(£) When MPP; = 0, APPg is equal to MPPg.

4. On the basis of {12.46) through (12.50), check whether the following are true under
conditions of constant returns to scale;

(@) An APP; curve can be plotted against & (= & /L) as the independent variable (on
the horizontal axis).

(B) MPP is measured by the slope of that APP; curve.
{¢) APPy is measured by the slope of the radius vector to the APP; curve.
(d) MPP; = APP; — k(MPPy) = APP, — k {slope of APP,).
5. Use (12.53) and (12.54) to verify that the relations described in Prob, 4b, ¢, and d are
obeyed by the Cobb-Douglas production function.
6. Given the production function @ = AKL# show that:
(@ a+ 8 > 1 implies increasing returns to scale.
{b) o+ f < 1 implies decreasing returns to scale.

(¢} o and B are, respectively, the partial elasticities of output with respect to the capital
and labar inputs.
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7. Let output be a function of three inputs: Q = AK9LENC,
{@) Is this function homogeneous? If so, of what degree?
(b} Under what condition would there be constant returns to scale? Increasing returns
to scale?
(¢) Find the share of product for input N, if it is paid by the amount of its marginal
product.
8. Let the production function Q = g(X, L) be homageneous of degree 2,
(@) Write an equation to express the second-degree homogeneity property of this
function.
() Find an expression for Qin terms of ¢{k), in the vein of (32.45).
(c) Find the MPPy function. Is MPP, stilt a function of k alone, as in the linear-
homogeneity case?
{d) Is the MPP¢ function homogeneous in K and.? If so, of what degree?

12.7 Least-Cost Combination of Inputs

As another example of constrained optimization, let us discuss the problem of finding the
Jeast-cost input combination for the production of a specified tevel of output )y represcnt-
ing, say, a customer’s special order. Here we shall work with a general production function;
later on, however, reference will be made to homogeneous production functions.

First-Order Condition

Assuming a smooth production function with two variable inputs, O = ({a, h), where
Q.. Op > 0, and assuming both input prices ta be exogenous {though again omitting the
zero subscript), we may formulate the problem as one of minimizing the cost

C=uP, +5F
subject to the output constraint

Qa, by =
Hence, the Lagrangian function 15
Z=ab;+hPy+ Q) — Ha, b))
To satisfy the first-order condition for a minimum C, the input levels (the choice vari-

ables) must satisfy the following simultancous equations:

Z,u = QU - Q(:‘.’I._ b] == 0

Zo=F,—n0,=10

Zli; = Pf', —_in}, =
The first equation in ihis sct is merely the constraint restated. and the last twe imply the
condition

Pa' Ph
T ==-—=0 1255)
Qu Qh (





