CHAPTER 15

Implicit Functions
and Their
Derivatives

So far, we have been working only with functions in which the endogenous
or dependent variables are explicit functions of the exogenous or independent
variables. In other words, all the functions we have studied have had the x;’s on
the right side and the y on the left side:

y=Fxy..., Xn). M

When the variables are separated as in (1), we say that the endogenous variable is
an explicit function of the exogenous variables.

This ideal situation does not always occur in economic models. Frequently,
the equations which arise naturally, for example, as first order conditions in a max-
imization problem, have the exogenous variables mixed in with the endogenous
variables, as in

G(xy, X2 ..., X5, y) = 0. 2)

If for each (xy, ..., x,) equation (2) determines a corresponding value y, we say
that the equation (2) defines the endogenous variable y as an implicit function of
the exogenous variables xj, . . ., x,. An expression like (2) is often so complicated
that one cannot solve it to separate the exogenous variables on one side and the
endogenous on the other, as in (1). However, we still want to answer the basic
question: how does a small change in one of the exogenous variables affect the
value of the endogenous variable? This chapter will demonstrate how to answer
this question for implicit functions.

15.1 IMPLICIT FUNCTIONS
Examples

Let’s start with some simple examples.

334
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Example 15.1 The equations
4x+2y =S5 or 4x+2y—5=0 3)

express y as an implicit function of x. Of course, in this case, we can easily
solve (3) and write y as an explicit function of x:

y=25-2x

Example 15.2 A more complex example of an implicit tunction is the equation
y? = Sxy + 4x* = 0. @)

We substitute any specified value of x into (4) and then solve the resulting
quadratic equation for y. For example, when x = 0, (4) becomes y? = 0, whose
solution is y = 0. When x = 1, (4) becomes y? — 5y + 4 = 0, whose solutions
are y = 1 and y = 4. (When there are more than one choice of y for a given
value of x, there is often some additional information which leads to a choice
of a single y value.) Even though (4) is more complex than (3), we can still
convert (4) into an explicit function (actually, a correspondence) by applying
the quadratic formula to it:

S5x +4/25x2 —16x2 1 4x
- = _(5x % 3x) =
y 2 2(5x %) {x.

Example 15.3 Applying the quadratic formula to the implicit function: xy* —
3y — & = 0 yields an explicit function

1
y =50 + 39 + 4xev).

However, this explicit function may very well be more difficult to work with
than the original implicit function.

Example 15.4 Changing one exponent in (4) to construct the implicit function
Yy —Sxy+4x* =0 5)

yields an expression which cannot be solved into an explicit function because
there is no general formula for solving quintic equations. However, (5) still
defines y as a function of x. For example, when x = 0, (5) becomes y° = 0,
whose solution is y = 0. When x = 1, (5) becomes y° — 5y + 4 = 0, with
solution y = 1.
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Example 15.5 Consider a profit-maximizing firm that uses a single input x at a
cost of w dollars per unit to produce a single output via a production function
y = f(x). If output sells for p dollars a unit, the firm’s profit function for any
fixed p and w is :

Nx)y=p-fx)—w-x.

One takes the x-derivative of this profit function to derive the equation for the
profit-maximizing choice of x:

pf'(x)—w=0. ©®

Think of p and w as exogenous variables. For each choice of p and w, the firm
will want to choose x that satisfies (6). There is no reason to limit the models
to production functions for which (6) can be solved explicitly for x in terms of
p and w. To study the profit-maximizing behavior of a general firm, we need to
work with (6) as defining x as an implicit function of p and w. We will want
to know, for example, how the optimal choice of input x changes as p or w
increases. If there are multiple solutions x of (6) for a given p and w, we can
usually choose among the solution candidates By using second order conditions
for a maximum or by looking for the global maximizer.

The fact that we can write down ar implicit function G(x, y) = c does not
mean that this equation automatically defines y as a function of x. For example,
consider the simple implicit function

P +yt=1 (7

When x > 1, there is no y which satisfies (7). However, usually we start with a
specific solution (x, yy) of the implicit equation G(x, y) = c and ask if we vary x
a little from x, can we find a y near the original y, that satisfies the equation. For
example, if we start with the solution x = 0,y = 1 of (7) and vary x a little, we
can find a unique y = +/1 — x% near y = 1 that corresponds to the new x. We can
even draw the graph of this explicit relationship around the point (0, 1), as we do
in Figure 15.1.

However, if we start at the solutionx = 1, y = 0 0f (7), then no such functional
relationship exists. As Figure 15.2 indicates, if we increase x alittle tox = 1 + &,
then there is no corresponding y so that (1 + &, y) solves (7). If we decrease x a
little to 1 — &, then there are two equally good candidates for y near y = 0, namely

y=+v2e—¢&? and y= —v2¢— &

As Figure 15.2 illustrates, because the curve x? + y? = 1 is vertical around (1, 0),
it does not define y as a function of x there.
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The graph of x* + y* = 1 near the point (1, 0). 15.2

The Implicit Function Theorem for R?

For a given implicit function G(x, y) = c and a specified solution point (xg, yo),
we want to know the answers to the following two.questions:

(1) Does G(x, y) =-c determine y as a continuous function of x for x near xy
and y near y,?

(2) If so, how do changes in x affect the corresponding y’s?

Let’s phrase these two questions more analytically.
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(1) Given the implicit equation G(x,y) = c and a point (xg, yo) such that
G(xo, yo) = ¢, does there exist a continuous function y = y(x) defined on
an interval / about xj so that:

(a) G(x, y(x)) = cforallxin/ and

(b) y(x0) = yo?
(2) If y(x) exists and is differentiable, what is y'(xo)?

Notice that the statement “y(x) exists” is much more general than the statement
“an explicit function y(x) can be written down.”

It turns out that the answers of these two questions are closely related to each
other in that if the first question has a positive answer, one can easily use the Chain
Rule to compute a formula for y’(x) in terms of dG/dx and 4G /dy. On the other
hand, this formula for y’(x) in terms of dG/dx and dG/dy leads to the natural
criterion for an affirmative answer to the existence question.

Example 15.6 Let’s lookat a specific example first. Consider the cubic implicit
function

2=3xy+y*-7=0 )]
around the point x = 4, y = 3. (Check that this point satisfies (8).) Suppose
that we could find a function y = y(x) which solves (8). Plugging this function
into (8) yields
x? = 3xy(x) + y(x)* =7 =0.

Differentiate this expression with respect to x, using the product rule to differ-
entiate the second term and the Chain Rule to differentiate the third term:

2x — 3y(x) — 3xy'(x) + 3y(x)? - y'(x) = 0,

or y'(x? = - )

Atx = 47y = 3, we find

2:4-3-3
/ R
YO =T334 15

We conclude that if there is a function y(x) which solves (8) and if it is differ-
entiable, then as x changes by Ax, the corresponding y will change by Ax/15.

Now, let’s carry this computation out more generally for the implicit function
G(x, y) = c around the specific point x = xo, ¥ = yo. We suppose that there is a
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C! solution y = y(x) to the equation G(x, y) = c, that i, that

Gl y(x)) = c. (10)

We will use the Chain Rule (Theorem 14.1) to differentiate (10) with respect to x
at xp:

dx oG d
;ﬁx(xo, y(x0)) : ™ + g(xo, y(x0)) - a%’(xo) =0,

oG oG
or a(xo» Yo) + g(xo: y0) " ¥'(x0) = 0.

Solving for y'(x,) yields

oG
;(Xo, Yo)

y'(x0) = ‘r- (an
5(«\(» o)

We see from (11) that if the solution y(x) of G(x, y) = cexists and is differentiable.
itis necessary that (4G /dy)(x, yo) be nonzero. As the following fundamental result
of mathematical analysis indicates, this necessary condition is also a sufficient
condition.

Theorem 15.1 (Implicit Function Theorem) Let G(x, y) be a C' function
on a ball about (xy, yy) in R2. Suppose that G(xy, yo) = ¢ and consider the
expression

G(x,y) =c.

If (3G /dy)(xy, yo) # O, then there exists a C' function y = y(x) defined on an
interval / about the point x; such that:

(@) G(x, y(x)) =cforallxinl,
() y(x0) = yv, and

ﬁ(xo, )

ax
(©) ¥Y'(x) = —

5 (x0, yo)
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Example 15.7 Consider the equation
Gxy)=x>=3xy+y’-7=0 (12)

about the point (xp, yo) = (4, 3) in Example 15.6. One computes that
=2x—3y=-1 at (4, 3)

=-3x+3? =15 at(4,3)

¢|¥ ®[¥

Since (8G/dy)(4,3) = 15 # 0, Theorem 15.1 tells us that (12) does indeed
define y as a C! function of x around xy = 4, yo = 3. Furthennore,

oG
S = E"(xo, o) R
)=~ =,
oG 15
E(xo, Yo)

just as we discovered in Example 15.6. We can now conclude that the solution
corresponding to x; = 4.3 is roughly

1

i =yo + y'(o)Ax = 3+ (E) 3=302

which compares well with the actual y, = 3.01475..., which had to be com-
puted numerically.

Example 15.8 Return to the equation x?> + y?> = 1. We saw that this equation
does determine y as a function of x around the point x = 0 and y = 1. We can
easily compute that G/dy = 2y = 2 # 0 at (0, 1). So, Theorem 15.1 assures
us that y(x) exists. Furthermore, it tells us that

WG/ _ 22 _ 0

y'(x)

k=0 aGJayy 2y 2 '

when x = 0 and y = 1. In this case, we have an explicit formula
y(x) = V1 —x2 (13)
for y(x). We can compute directly from (13) that

-X

y'e) =

1—x2
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which does indeed equal zero when x = 0. Of course, we can see in Figure 15.1
that the graph of y(x) is horizontal at (0, 1), so its derivative should be zero.
On the other hand,we noted in Figure 15.2 that no nice function y(x) exists

for x> + y> = 1 around x = 1, y = 0. This is consistent with Theorem 15.1,
since G/dy = 2y = 0 at (1, 0).

Several Exogenous Variables in an Implicit Function

Theorem 15.1 and the discussion around it carry over in a straightforward way to
the situation where there are many exogenous variables, but still one equation and
therefore one endogenous variable: )

G(xyy .-y Xpy) =c. (14)

Around a given point (xJ, ..., x;, y*), we want to vary X = (xy,..., x;) and then
find a y-value which corresponds to each such (xj, ..., xx). In this case, we say
that equation (14) defines y as an implicit function of (x,, ..., x;). Once again,
given G and (x*, y*), we want to know whether this functional relationship exists
and, if it does, how does y change if any of the x;’s change from x;. Since we are
working with a function of several variables (x, . .., x¢), we will hold all but one
of the x;'s constant and vary one exogenous variable at a time. But this puts us
right back in the two-variable situation that we have been discussing.
The natural extension of Theorem 15.1 to this setting is the following.

Theorem 15.2 (Implicit Function Theorem) Let G(x, ..., x, y) be a C!
function around the point (x7}, ..., x;, y*). Suppose further that (xj,..., x;, y*)
satisfies

Gix},...,xpy) =c

0G * * %
and that g(x,,...,xk,y )#0.

Then, there is a C' function y = y(x, ..., x,) defined on an open ball B about
(x}, ..., x;) so that:

@) G(xy,..., x, Y(x1,..., X)) = cforall (xy,...,x) €B,
®) y* = y(x},..., x;), and
(c) for each index i,

& a(x;,...,x,:, ")
* * 1
—i(xl,...,xk) = - G . (15)

g(xf, v Xy YY)
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EXERCISES
15.1 a) Prove that the expression x> — xy> + y> = 17 is an implicit function of y in terms
of x in a neighborhood of (x, y) = (5, 2).
b) Then, estimate the y value which corresponds to x = 4.8.

15.2 Suppose that we want to solve G(x, y) = c for x as a function of y around some point
(x0, o). Write out a careful statement of the Implicit Function Theorem to handle
this case.

15.3 For equation (8), estimate y when x = 3.7.

15.4 Can you solve (8) fory as a function of x when x = 0. If so, estimate the y’s that
correspond to x = —.1 and to x = .15 respectively.

15.5 Use the implicit form and the explicit form to compute y'(x) for (x, y) = (1,1) in
Example 15.2.

15.6 Consider the function F(x, x3, ¥) = xi — x3 + ).

a) If x; = 6 and x> = 3, find a y which satisfies F(x;, x2, y) = 0.

b) Does this equation define y as an implicit function of x; and x; near x; = 6,
x; = 3?

c) If so, compute (dy/dx, )(6, 3) and (dy/dx;)(6, 3).

d) If x, increases to 6.2 and x, decreases to 2.9, estimate the corresponding change
iny.

15.7 Consider the profit-maximizing firm in Example 15.5. If p increases by Ap and
w increases by Aw, what will be the corresponding effect on the optimal input
amount x? .

15.8 Consider the equation x> + 3y? + 4xz2 — 3z%y = 1. Does this equation define z as a
function of x and y:

a) In aneighborhoodof x = 1,y = 1?

b) In aneighborhoodof x =1,y = 0?

¢) In a neighborhood of x = 0.5, y = 0? If so, compute dz/dx and dz/dy at this
point.

15.9 Consider 3x2yz + xyz> = 30 as defining x as an implicit function of y and z around

thepointx =1,y =3,z = 2.

a) If y increases to 3.2 and z remains at 2, use the Implicit Function Theorem to
estimate the corresponding x. ’

b) Use the quadratic formula to solve 3x2yz +xyz? = 30 for x as an explicit function
of y and z. Use approximation by differentials on this explicit formula to estimate
xwhenyis3.2andz = 2.

¢) Which way was easier?

15.2 LEVEL CURVES AND THEIR TANGENTS

Geometric Interpretation of the Implicit Function Theorem

In this section, we look at the Implicit Function Theorem from a more geometric
point of view. In general, we would expect that the equation-G(x, y) = ¢ of two
variables defines a curve in the plane. For example, the equation Ax + By = C
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defines a line in the plane and the equation x> + y?> = 1 defines a circle in the
plane. We can view the Implicit Function Theorem as telling us the following
geometric information:

When the set of points in the plane which satisfy the equation G(x, y) = c can
be considered as the graph of a function y = f(x) of one variable, especially
in the neighborhood of some fixed solution (xy, o).

Example 15.9 Consider again the equation x? + y> = 1, which describes a citcle
of radius 1. Figure 15.1 indicates that we can think of the arc of the circle about
the point (0, 1) as the graph of a function y = f(x)(= v'1 — x2). However, as
Figure 15.2 indicates, the arc of the circle about (1, 0) cannot be considered as
the graph of a function y = f(x). Such an f would be double-valued for x to
the left of x = 1 and empty-valued for x to the right of x = 1.

In addition to telling us whether the locus G(x, y) = c¢ can be described as
the graph of a function.y = f(x), the Implicit Function Theorem also tells us the
slope f'(x) of the tangent line to the graph at (x, y). Consequently, it tells us the
slope of the curve at G(x, y) = ¢. We summarize this geometric interpretation of
the Implicit Function Theorem as follows.

Theorem 15.3  Let (xq, y) be a point on the locus of points G(x, y) = ¢ in
the plane, where G is a C! function of two variables. If (G /dy)(xo, yo) # O,
then G(x, y) = c defines a smooth curve around (xy, yy) which can be thought
of as the graph of a C! function y = f(x). Furthermore, the slope of this curve
is:

G
™ (0, yo)

oG
£ (x0, yo)

If (6G/3dy)(xo, yo) = O, but (3G /dx)(xg, yo) # O, then the Implicit Function
Theorem tells us that the locus of points G(x, y) = c is a smooth curve about
(x0, o), which we can consider as defining x as a functioa of y. It also tells us
that the tangent line to the curve at (xy, yy) is parallel to the y-axis, i.e., vertical.

Definition A point (x, yo) is called a regular point of the C' function G(x, y)
if

oG oG
E(x"’ ) #0 or g(xo, Yo) # 0.
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If every point (x, y) on the locus G(x, y) = cis aregular point of G, then we call the
level set {(x, y) : G(x, y) = c} a regular curve or sometimes a one-dimensional
manifold.

If G(x, y) = c is a regular curve in the plane, then Theorem 15.3 states that at
each point on the curve, the curve can be considered as defining y as a function of
x or x as a function of y. Furthermore, there is a well-defined tangent line at each
point on this curve.

Proof Sketch

The Implicit Function Theorem is so important that we would be remiss to avoid a
discussion of its proof. So, we now sketch a proof of the above geometric version
of the Implicit Function Theorem — Theorem 15.3.

Let G bea C! function on R?, as in the statement of Theorem 15.3. We suppose
that G(xo, yo) = 0 and that (3G /dy) (xo, yo) # 0; without loss of generality, we
assume that (6G/dy) (xq, yo) > 0. Since G is C', (dG/dy) is continuous and we
can find an £ > 0 and a small square

S={xy)ixo—e=x=x+gy—c=y=sy +¢

for which (4G /dy) (x, y) > 0 for all (x, y) € S. Forx, € (xg — & xp + &), let £,
denote the vertical line segment in S through (x), o), as in Figure 15.3:

‘ex| E{(x7y):x=xh YO_€5)’5)’0+8}CS-

Y
| | |
| L
i /:/l/G>Oon(y=yo+e)
. -
Yoté€———"""—"""M——————T1//1 -
Gis strictly
increasin
Yo—EfF————————=-—- ———-
: : : G<Oon{y=y0—q
| ! |
| 1 |
| I |
1 1 1

x

Xp—€ Xo 1 X+ €

The square S in R%,
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Since (G /dy) is positive on each £,, G is strictly increasing on each £,. Since
G(xo, Yo) = 0 and G is strictly increasing on £ ,, G(xo, yo — €) < 0and G(xo, yo +
€) > 0. By the continuity of 9G/dy, we can choose the ¢ in the definition of S
small enough so that

G(x,yo~€)<0 and G(x,y,+&) >0 forallx € (xg — & xp + &).

In other words, G is negative on the bottom side of the square S and positive on
the top side of S. On each vertical segment £,:

(1)" G is negative at the bottommost point (x, yy — &),
(2) G is positive at the topmost point (x, yy + £), and
(3) G is strictly increasing.

It follows that for each x in (x) — g, xy + &), there is a unique ¥ = y(x). depending
on x, for which G(x, y) = 0. A little more work shows that the continuity of G
implies that the dependency of y(x) on v is continuous and that the differentiability
of G implies that the dependency of v(x) on x is differentiable. This y(x) is the
smooth function in the conclusion of Theorem 15.3.

Relationship to the Gradient

In Section 14.6, we learned that the gradient vector VG(x, y) of a C' function G
points into the direction of greatest increase. Now, we will prove a complementary
result: that the gradient is always perpendicular to the level curve; that is, it is
perpendicular to the tangent line to the level curve at (x, y). Of course, in order to
make this assertion, we need to guarantee that' the level curve of G through (x, yo)
really does have a tangent line. By the Implicit Function Theorem, we nced only
require that (xy, y,) be a regular point of G.

Theorem 15.4 Let G be a C' function on a neighborhood of (xy, yy). Suppose
that (xy, yo) is a regular point of G. Then, the gradient vector VG(xq, yy) is
perpendicular to the level set of G at (xy, v).

Proof  Let (xy, yy) be a regular point of G:

oG oG
VG(xo, yo) = (;(xo, Yo)» (9_v(xo’ Yo)) # (0,0).

If (6G/dy)(xo, yo) = O, then the gradient is a horizontal vector and the tangent
to the level set is a vertical line, as we saw above. In this case, the two are
perpendicular to each other. In general, the slope of the level set of G through
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(xOI }’0) is

oG
™ (x0, Y0)
29

= )
E(Xo, o)

The vector which realizes this slope is

oG

= (0 y0)
ox
v=|1], ——

oG
ko (x0, Yo)
Since

% (%0 0)

- X0, )0

, ox oG oG

V- VG\X(), yo) = 1, _JG— . (—, —) = 0,
gy‘(xo, Yo)

v and V G(xg, yo) point in perpendiculag directions. B

Example 15.10 The gradient of G(x, y) = x> + y? is the vertical vector (0, 2)
at the point (0, 1), where the circle is horizontal; and it is the horizontal vector
(2, 0) at the point (1, 0) where the circle is vertical. See Figure 15.4.

Figure
15.4 Gradients of G(x, y) = x2 + y2.
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The geometry behind the statement of Theorem 15.4 gives a geometric justifi-
cation of the hypotheses of the Implicit Function Theorem. If G(x, y) = ¢ defines
a regular curve around the point (xq, yy), this curve will be the graph of a function
y = f(x) if and only if the curve is not vertical at (x, yy), that is, if and only if the
gradient is not horizontal at (x, ), that is, if and only if the y-component ¢G /dy,
of VG(xq, yy) is not zero.

Tangent to the Level Set Using Differentials
We present one more piece of evidence for the conclusion of the Implicit
Function Theorem that the slope of the level set G(x,y) = c at (x, yy) is

— (65 /ox)(xp, ¥0)/ (G /dy)(x, yu)- In Section 14.4, we used differentials tc ap-
proximate the change in G in the vicinity of (xy, yy):

G G
G(xo + Ax, yo + Ay) — G(xo, o) = (E)—x(x”’ yo)Ax + rf./—y(xm yo)Ay.  (16)

We can use (16) to ask what combinations of linear movements Ax and Ay from
(x0, yo) lead to no change in G. This should be the direction of the tangent line to
the level set {G(x, y) = G(x0, yo)} at (xq, yo). To find this direction, just set AG,
the left hand side of (16), equal to zero:

oG oG
0= E(Xoy Yo)Ax + g(xm Yo)Ay. 17)

The direction of no change in G at (x, yo) is given by solving (17) for Ay/Ax:

oG

Ay E(XO’ o)

A~ TG, a9
E(x()! }’0)

We can use expressions (17) and (18) to restate Theorems 15.3 and 15.4 in
terms of the tangent directions to the level set of G at (x, yp).

Theorem 15.5 Let GbeaC! function on a neighborhood of (xg, yy). Suppose
that (xg, yo) is a regular poiiit of G. Then, the vector v = (v, v;) points in the
direction parallel to the tangent line to the level set of G at (xq, yo) if and only if

oG oG
DG(xg, yo) v = a-(xo, yoyvi + g(xo, Yo)v2 =0

that is; v is in the nullspace of DG(xo, yo).
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This use of the Implicit Function Theorem is the natural approach when
studying the slope of an indifference curve of a utility function and the slope of an
isoquant of a production function, since in these situations we really are interested

.in which directions to move to keep the function constant. Recall that the level
turve of a utility function U(x, y) is called an indifference curve of U. Its slope
at (xo, o) is called the marginal rate of substitution (MRS) of U at (g, yo) since
it measures, in a marginal sense, how much more of good y the consumer would
require to compensate for the loss of one unit of good x to keep the same level of
satisfaction. By the Implicit Function Theorem, the MRS at (xo, yp) is:

au
— (x0, Y0)
ox

oUu ( )
gy o0 Yo

" Similarly, if 0 = F(K, L) is a production function, its level curves are called
isoquants and the slope —Fk /F of an isoquant at (K, Lo) is called the marginal
rate of technical substitution (MRTS). It measures how much of one input

would be needed to compensate for a one-unit loss of the other unit while keeping
production at the same level.

Level Sets of Functions of Several Variables

For a function F(x), .. ., x,) of more than two variables, the level sets will in general
be (n — 1)-dimensional objects. For example, the level set Ax + By + Cz = D
is a two-dimensional plane in R3, and the level set x> + y? + 22 = 1 is a two-
dimensional sphere of radius 1, as pictured in Figure 15.5. On both of these sets,
at each point there are two independent directions in which one can move. If some
(0F /éx;)(x*) # 0, then the Implicit Function Theorem tells us that the level set
of F through x* can be considered as the graph of a function of x; in terms of
Xiy oy Xim1, Xi+1, -+ -, Xn around x* in R™:

Xi = f(X1,. 00y Xi=1, Xit 15+« 5 Xn)-

In this case, the tangent hyperplane to the level set of F is the tangent hyperplane
to the graph of f. As in two dimensions, the gradient vector

VF(x") = (%(x"),..., :x—i(x'))

is perpendicular to the tangent hyperplane of the level set.

Example 15.11 The point (0, 0, 1) is the “north pole” on the sphere x2 + y? + 22 =
1. The gradient vector there is (0, 0, 2) which points due north, perpendicular to
the sphere at (0, 0, 1), as illustrated in Figure'15.5.
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F(0,0,1)

The sphere x* + y> + 22 = 1in R,

Example 15.12 By the discussion in Section 10.6, the vector
n=(ABC)
is perpendicular (or normal) to the plane
Ax+By+Cy=D

at every point on the plane. Since n is also the gradient vector VF of F(x, y, z)
Ax + By + Cz, we see that VF is perpendicular to the level set F(x, y, z) =
as we computed above.

For future reference, we summarize the analogue of Theorem 15.4 for implicit
functions of several variables. First, we extend the definition of a regular curve to
define a regular surface.

Definition A point x* is called a regular point of the C! function F(x,, ..., X»)
if VF(x*) # 0, that is, if some (0F /dx;)(x*) is not zero. If every point on the level
set

Fe=A{(x1,.--, xn) : F(x1,..., %) = ¢}

is a regular point of F, then we call . a regular surface or (» — 1)-dimensional
manifold in R".

Figure
15.5
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Theorem 15.6 If F:R" — R! is a C! function, if x* is a point in R®, and if
some (9F /dx;)(x*) # 0, then:

(a) the level set of F through x*,
Froey ={(x1, -0, x0) 1 F(xy, . . ., xn) = F(x")}, (19)

can be viewed as the graph of a real-valued C! function of (n — 1)
variables in a neighborhood of x*;

(b) the gradient vector VF(x"), considered as a vector at x*, is perpendicular
to the tangent hyperplane of Fr- at x*; and

(c) the vector v, as a vector with its tail at x*, is a tangent vector to the
level set (19) at x* if and only if v is in the nullspace of DF(x*); that is,
DF(x*)v = 0.

EXERCISES

15.10 a) For (x, y) = (1, 1), (1, 0), and (=2, 1), draw the level sets of f(x, y) = x* + y?

through (x, y) and the gradient vector of f at (x, y).
b) Repeat this process for f(x, y) = x2 — y2.

15.11 a) Write an equation involving the partial derivatives of f(x, y) and g(x, y) that is
equivalent to the condition that the level curves of f and g intersect only at right
angles.

b) Show that the level curves intersect orthogonally if f, = g, and f, = —g,.

15,12 Consider the function f(x, y) = x2¢’.

a) What is the slope of the level setatx = 2,y = 0?7
b) In what direction should one move from the point (2, 0) in order to increase f
most quickly? Express your answer as a vector of length 1.

15.13 A firm uses x hours of unskilled labor and y hours of skilled labor each day to
produce Q(x, y) = 60x*/>y'/? units of output per day. It currently employs 64 hours
of unskilled labor and 27 hours of skilled labor.

a) What is its current output?

b) In what direction (expressed as a unit vector) should it change (x, y) if it wants
to increase output most rapidly?

¢) The firm is planning to hire an additional hour and a half of skilled labor. Use
calculus to estimate the corresponding change in unskilled labor that would
keep its output at its current level.

15.3 SYSTEMS OF IMPLICIT FUNCTIONS
Definition A set of m equations in m + n unknowns
Gi(X1y .o Xmn) = €1
(20)

Gm(X1,-.) Xm+n) = Cm



[15.3] SYSTEMS OF IMPLICIT FUNCTIONS 351

is called a system of implicit functions if there is a partition of the variables into
exogenous variables and endogenous variables, so that if one substitutes into (20)
numerical values for the exogenous variables, the resulting system can be solved
uniquely (in some sense) for cofresponding values of the endogenous variables.
This is the natural generalization of the single-equation implicit function that we
considered in Section 15.1.

Linear Systems

The last section of Chapter 7 discussed linear implicit systems and concluded that,
for such systems, in order for each choice of values of the exogenous variables to
determine a unique set of values of the endogenous equations, it is necessary and
sufficient that:

(1) the number of endogenous variables equal the number of equations, and
(2) the (square) matrix of coefficients corresponding to the endogenous vari-
ables be nonsingular.

Example 15.13 Consider the linear system of implicit functions

4x +2y+2z2— r+3s=S5
2x +2z+8r—5s=7 1)
2x + 2y + r— s=0.
Since there are three equations, we need three endogenous variables and there-
fore two exogenous variables. Let’s try to work with y, z and r as endogenous

and x and s as exogenous. Putting the exogenous variables on the right side and
the endogenous variables on the left, we rewrite (21) as

2 2 -1 y S—4x—3s
0 2 8|lz]|=|7—2x+5s (22)
20 1 r -2+ s

Since the determinant of the coefficient matrix in (22) is 40, we can invert (22)
and solve for (y, z, r) explicitly in terms of x and s:

y 2 2 -1\ ' /5-4x—-3s
z 02 8 7—2x+5s
r 2 0 1 -2+ s

y 1 2 -2 18 5—4x—3s
or z 0 16 4 -16 7—2x+ 5s
r -4 4 4 -2+ s
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On the other hand, if we want x, y, and z to be endogenous, we have to solve

the system

4 2 2\ [(x 5+ r—3s

2 0 2){yl=1]17—-8r+5s (23)

2 20 z 0— r+ s
Since the determinant of the coefficient matrix in (23) is zero, we know that there
are right-hand sides for which (23) cannot be solved for (x, y, z). For example,
take r = —5 and s = 0. Then, (23) becomes

4x+2y+2z2=0

2x +2z =47
2x + 2y =S.

Adding the last two equations yields the inconsistent system:

4x+ 2y +22=0
4x + 2y + 2z = 52.

Since there is no solution in (x, y, z) for (r,s) = (—5,0), this partition into
exogenous and endogenous variables does not work.

Example 15.14 A classical system of implicit functions in economics is the
Keynesian linear IS-LM model:

Y=C+I+G (GNP accounting identity)

C=a+b(Y —T) (consumption function)

I=1iy—ir (investment function)

M =c\Y —cr (money market equilibrium),
where Y is GNP or national income, C is consumer consumption, / is investment,
G is government spending, T is tax collection, M* is money supply, r is the
interest rate, and the other six lowercase letters stand for positive behavioral
parameters, with 0 <'b < 1. We follow the standard method of substituting
the second two equations into the first equation and simplifying to obtain the
system
(1—b)Y+i,r =a+i0+G—bT

24
a¥Y —cuor =M 24)
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The natural endogenous variables in this model are Y and r, the variables on
the left-hand side of (24). The (Y, r) coefficient matrix in (24),

(l—b il)' 25)

Ci —C2

has determinant —c,(1 —b)—i,c,, whichis nonzero since 0 < b < 1. Therefore,
we can solve system (24) for Y and r; in this case, we can invert the matrix (25)
to obtain the explicit solution

(Y)= 1 (Cz Iy )(a+i0+G—;bT)
r) T ad=-b+ia\a -0 -b e

Nonlinear Systems

The corresponding result for nonlinear systems follows from the usual calculus
paradigm: linearize by taking the derivative, apply the linear theorem to this
linearized system, and transfer these results back to the original nonlinear system.
We write the basic nonlinear system of m equations in m + »n unknowns as

Fi(ie oo Yo Xye oo, X)) = €4
F’.’(.)'I ----- Yo Xpoe o v"‘ll) =0
(26)
Fu(ie oo ¥ X1, 0000 Xy) = Co,
where we want yy,. .., ), to be endogenous and x, .. ., x, to be exogenous. From

the linear theory, we know that there should be as many endogenous variables as
there are independent equations, in this case m. The linearization of system (26)
about the point (y*, x*) is

(9F| (9F| aF] 0Fl
Tlayy + oo+ ldy, + Zldxy + -+ + Zldx, =0
3 | 84| 3ym Ym t9X| X| ax,, Xn
27
oF oF, oF oF
My + o+ g+ — Ty + o+ = dx, = 0,
a7 n m Im ox) i oxp n

where all the partial derivatives are evaluated at the point (y*, x*). By the Linear
Implicit Function Theorem, the linear system (27) can be solved for dy;, ..., dyn
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in terms of dxy, .. ., dx, if and only if the coefficient matrix of the dy;’s,
3}’1 aym
(Fy, ..., Fnm) _ 28)
A1, -+ Ym)
% Ym

is nonsingular at (y*, x*). Because this system is linear, when the coefficient matrix
(28) is nonsingular, we can use the inverse of (28) to solve the system (27) for the
dy;’s in terms of the dx;’s and cverything else

oF, oF, doF,
ol Sin1 5, dx
dy, %’l - }.’m .x,
cl=- : - : : (29)
dy, Fm . OFm n Fm dx; -
" ; ym 2im1 o

Since the linear approximation (27) of the original system (26) is a true implicit
function of the dy;’s in terms of the dx;’s, the basic principle of calculus leads us to
the conclusion that the nonlinear system (26) defines the y;’s as implicit functions
of the x;’s, at least in a neighborhood of (y*, x*).

Furthermore, one can actually use the linear solution (29) of the dy;’s in terms
of the dx;’s to find the derivatives of the y;’s with respect to the x;’s at (x*, y*).
To compute dy,/dx;.for some fixed indices h and %, recall that this derivative
estimates the effect on y; of a one unit increase in x;, (dx, = 1). So, we set all the
dx;’s equal to zero in (27) or (29) except dx; and then we solve (27) or (29) for
the corresponding dy;’s. If we use (29), we find

oy @ co. OEiNTY R 1
axn m Ym e
== : (30)
Y Fn . Fnm Fm
Eh a)'l a}'m E

Alternatively, we can apply Cramer’s rule to (27) and compute
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o WO
3}'1 ax/l ay;::
det : . : . :
(9’\/'/( _ 0)‘1 oxy, (9ym /
oy, 13F1 . 8F| . E)Fl
i Ik Yim
det : : ) : G
(9_)‘| (?YA 3}'m /

yoos Fryo oo, Fy

_ c?(yl,...,x,,,...,y,,,)
Oy, Fiu..., Fn)
OVt ees Yhrens Ym)

The following theorem — the most general form of the Implicit Function
Theorem — summarizes these conclusions.

de

Theorem 15.7 Let Fy,...,F,:R™"" — R! be C! functions. Considér the
system of equations

Fl()’l:uu,)’m;xl,---'xn): 1
(32)
Fm()’l:---:}’m,xh---,xn) =Cm

as possibly defining y,, ..., yn as implicit functions of xy, . .., x,,. Suppose that
(y", x") is a solution of (32). If the determinant of the m X m matrix

ok
P Ry Fa... Fa)
’ ol A0, Yhee s Ym
ZON ) I
aYI a)'m

evaluated at (y*, x*) is nonzero, then there exist C! functions
n = filx, ..., x,)

(33)

Ym = fm(xb . ..,X,.)
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defined on a ball B about x* such that

Fi(AX), -y fn(X), X1, ..., X0) = €

Fm(fl(x)’ N £16.9) xlx--wxn) =Cm
forall x = (xy,...,x,) in B and

y; = fl(x‘;’ .. "x:)

Ym = fm(X2 - -5 %)

Furthermore, one can compute (fy /dx;)(y", X*) = (dyx/dxn)(y", X*) by setting
dxy, = 1and dx; = 0 for j # £ in (27) and solving the resulting system for dy;.
This can be accomplished:

(a) by inverting the nonsingular matrix (28) to obtain the solution (30) or
(b) by applying Cramer’s rule to (27) to obtain the solution (31).

Example 15.15 Consider the system of equations

Fixya)=x*+axy+y*=1=0 (34)
34
Fz(x,y,a)Ex2+y2 —-a*+3=0

around the point x = 0,y = 1,a = 2. If we change a a little to a’ neara = 2,
can we find (x’, y") near (0, 1) so that (x/, y’, a’) satisfies these two equations?
To answer this question, we need the Jacobian of (Fy, F;) with respect to the
endogenous variables x and y at the pointx = 0,y = 1,a = 2:

o
o  dy 2 2
det 0,1,2) = det =4+#0.
N, |Or27(5 2)
ox ay

So, we can solve system (34) for x and y as functions of.a near (0, 1, 2).
Furthermore, atx = 0,y = 1,a = 2,

A(Fy, F7) 2x+a
det ——2—=2 y Xy
o_ o __ ("L 3)
da det A(Fy, F3) det(sz-i;ay ax;— 2y)
a(x y) Y
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and, plugging in (0, 1, 2),

Therefore, if a increases to 2.1, the corresponding y will increase to about 1.2.
Let’s use the other method to compute the effect on x. Take differentials of
the nonlinear system

(2x + ay)dx + (ax + 2y)dy + xyda = 0
2xdx + 2ydy — 2ada = 0.
Pluginx =0,y =1l,a=2:

2dx +2dy = 0da
0dx + 2dy = 4da.

Clearly, dy = 2 da (as we just computed above) and dx = —dy = —2 da. So,
if a increases to 2.1, the corresponding x will decrease roughly to —.2.

Example 15.16 A natural nonlinear generalization of the linear IS-LM model in
Example 15.14 is the system

Y=C+I+G
C=CY-T)
I=1I()

M* = M(Y,r),

where the nonlinear functions x — C(x), r — I(r), and (Y, r) — M(Y, r)
satisfy

oM oM
0<C'x)<1l I'ny<o — >0, — <0 3
(x) r) 7 0, and e 0 35)

The analogue to system (24) is

Y-CY-T)-I(r)=G

36
M@, r) =M, ©9)

which we want to define Y and r as impljcit functions of G, M*, and T. Suppose
that the current (G, M, T) is (G*, M**, T*) and that the corresponding (Y, r)-
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" equilibrium is (Y, r*). If we vary (G, M°, T) a little, is there a corresponding
equilibrium (Y, r) and how does it change? The linearization of system (36) is

(1=C'(Y" =T))dY —I'¢")dr = dG - C'(Y" = T")dT

" ,
dldY+%dr = dm
»

ay
L=C(r* =T =I'0")Y 4y
o ( an ) (o) &7
aY ar
~ (dG. -y - T"‘)dT)
B am’ '

all evaluated at (Y™, rr*, G*, ¥ ! T™). The determinant of the coefficient matrix
in (37).

- M M
= - - 4+ ) —
D=(1-C(r' =TG- +1'0) 5,
is negative by (35). and therefore is nonzero. By Theorem 15.7, the system
(36) really does define Y and r as implicit functions of G, M*, and.T around
(Y™ r*, G*, M**, T*). Inverting (37). we compute

oM

14,
((IY) i w I'er) dG — C((Y* = T")dT
dr - 5 M o . ( dMs : )
= 1-cr -1

If we increase government spending G, keeping M* and T fixed, we find

1 oM 1 oM
(I'Y—Bydc and dr = I—)WdG,

so that both Y and r increase.

EXERCISES

15.14 Carry out the calculations in Example 15.14.

15.15 For the linear and the nonlinear IS-LM models (24) and (36), how are the equilib-
rium Y and r affected by an increase in M*? by an increase in T'?

15.16 One solution of the system x*y —z =1, x + Y2+ 2 = 6isx =1,y =2,z = 1.
Use calculus to estimate the corresponding x and y whenz = 1.1.
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15.17

15.18

15.19

15.20

15.21

15.22

15.23

Consider the system of equations
Y+l +vV —xyp=15 22 +u2+V +xy =38,

at the solutionx = 1,y = 4,u = 1,v = —1. Think of « and v as exogenous and x
and y as endogenous. Use calculus to estimate the values of x and y that correspond
tou=.9andv = —11.

One solution of the system

2x? + 3xyz — 4uv = 16, x+y+3z+u-v=10

isx =1,y =22z=3,u=0,v=1.1f one varies u and v near their original values
and plugs these new values into this system, can one find unique values of x, y and
z that still satisfy this system? Explain.

Does the system x2° + y*v* = 2, xz + yvz> = 2 define v and z as C! functions of x
and y around the point (1, 1, 1, 1)? If so, find dz/dx, dz/dy, v/dx, and dv/dy there.
Check that x = 1,y = 4, u = 1,v = —1 is a solution of the system

v+ 2u® +v2 — xy = 15, 2y + u* + v + xy = 38,

If y increases to 4.02 and x stays fixed, does there exist a (, v) near (1, —1) which
solves this system? If not, why not? If yes, estimate the new u and v.

The economy of Northern Saskatchewan is in equilibrium when the system of
equations

2xz+xy+z—2\/5=11 xyz =16

is satisfied. One solution of this set of equations is x = 3,y = 2,z = 1, and

Northern Saskatchewan is in equilibrium at this point. Suppose that the prime

minister discovers that the variable z (output of beaver pelts) can be conrolled by

simple decree.

a) If the prime minister raises z to 1.1, use calculus to estimate the change in x and
y.

b) If x were in the control of the prime minister and not y or z, explain why you
cannot use this method to estimate the effect of reducing x from 3 to 2.95.

Consider the system of equations

x+2y+z=S5, 3xtyz = 12,

as defining some endogenous variables in terms of some exogenous variables.

a) Divide the three variables into exogenous ones and endogenous ones in a neigh-
borhood of x = 2,y = 1,z = 1 so that the Implicit Function Theorem applies.

b) If each of the exogenous variables in your answer to a) increases by 0.25, use
calculus to estimate how each of the endogenous variables will change.

Consider the system of two equations in three unknowns: x + 2y +z = 5, 3x?yz =

12.

a) Atthe pointx =2,y = 1,z = 1, why can we treat z as an exogenous variable
and x and y are the dependent variables?

b) If z rises to 1.2, use calculus to estimate the corresponding x and y.
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15.24 A firm uses two inputs to produce its output via the Cobb-Douglas production
function z = x°y, where a = b = .5. Its current level of inputs is x = 25,
y = 100. The firm will introduce a new technology that will change the b-exponent
on its production function to b = .504, with no change to a. Use calculus to
estimate the input combination which will keep the total output the same and the
sum of the inputs the same. [Hint: Work with the system x*y® = ¢ (or better
alnx + blny =Inc)and x + y = 125.]

15.25 Treat the linear IS-LM model at the beginning of Example 15.14 as four equations.
What is the natural choice of endogenous variables? Can this four-equation system
be solved for these endogenous variables in terms of the other variables?

15.4 APPLICATION: COMPARATIVE STATICS

Let’s put the Implicit Function Theorem to work in the most basic microeconomic
example of general equilibrium: a pure exchange economy with two consumers —
numbered 1 and 2 — and two consumption goods — parameterized by .v and y.

We suppose that consumer | has initial endowment (e, 0) and that consumer 2-

has initial endowment (0, e;). To describe the consumers’ preferences, let u; and
uz be C2, strictly concave (4! < 0) functions of a single' variable and let  be a
scalar between 0 and 1. For /i = 1,2, we assume that consumer i's preferences
over consumption bundles (x, y) are described by the utility function

Uixi, yi) = aui(x;) + (1 — adu;(yp). (38)

These U;’s include Cobb-Douglas utility functions. (Exercise.) Let p and g denote
the price of a unit of good | and good 2, respectively. In this example, we will
write the equations for the equilibrium prices and consumption bundles for this
model and then study how these bundles are affected by changes in the consumers’
initial endowments.

Consumer i wants to consume the bundle (.v;, ¥;) that maximizes U; subject to
the affordability constraint

px; + qy; = value of initial endowment. 39)

As one learns in intermediate microeconomics, and as we will discuss more fully
in Chapter 18, at the bundle of choice, the consumer’s marginal rate of substitution
between the two goods, that is, the consumer’s internal relative valuation of the
goods

a_(/i( . v.)
ax; ou(x;)

BU, = _ / 'i !
T(-xi‘)’i) (I = @uiy)

(40)
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must equal the price ratio p/gq, the market’s external relative valuation of the two
goods. By (38), (39) and (40), the equations that describe the optimal choice for
consumer 1 are

o (x1) p
o) P 41
a- a)u;(y‘) q (41)
px1 + gy = pey, (42)

and the corresponding equations for consumer 2

aul(xz) D
T—aulon) ¢ (43)
P+ v = gex. (44)

Since we are dealing with a pure exchange economy, the total amounts of both
commodities are fixed:

x|, +x; =e, (45)
Nty =e. (46)

Equations (41) through (46) form a system of six equations in the six unknowns
X1, Y1, X2, ¥2, D, and q. As usual, all prices are relative: multiplying both prices
by the same scalar does not change equations (41) through (46). To remove this
ambiguity, we will set g = 1. In the language of economics, we are treating good
2 as the numeraire.

We can ignore equation (44) because it is implied by equations (42), (45) and
(46). (Exercise.) The remaining five equations can be written as

ui(n) = puin) =

pxi +y —pe =0

@
l-«a

a . 47
T“é(xz) —puy(»2) =0 (47)
a
X1 +x—¢ =0
Nty —e =0
We begin by setting both endowments €qual to 1 : e; = e; = 1. In this case,
the unique solution of system (47) is

X =y =a

|
|

|
R

X2 = Y2 = (48)

p:
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(Exercise.) We ‘ask how a change in the initial endowment e, affects the equilibrium
consumption bundles and prices (48), keeping e; fixed.
The linearization of system (48) is

= pui(On)dy, — uy(n)dp = 0

pdx1 + 1dy1 + (X] - l)dp =0
a 49
Taug(xz) dx; — puy(y2) dy, — up(y)dp = 0 49)
1dx. + ldX2 =0
ldyl + ldy: = dez.

The Implicit Function Theorem tells us that, if we can solve linear system (49) for
dx,, dx;, dy,, dyz, dp, then we can compute dx, /de,, 9x;/dey, dy, /des, dy2/ e,
and dp/de;.

The easiest way to solve system (49) is to solve the last two equations for dx,
and dy;:

dx; = —dx) dy, = de; — dy,,

and substitute (48) and these expressions for dx; and dy, into the first three
equations of (49):

. = uj(a)dx, — a u(@)dy, —  uj(a)dp=0
-« -«

. dyy+ (a—1)dp=0
- —uz(] - a)dx) + uy(1 — a)dy, — uy(1 — a)dp

1-

=
Multiply the first equation through by (1 — ) /uj(a), the second equation through
by (1 — a), and the third equation through by (1 — a)?/au}(1 — a):

auy(a) au”(a) L
e W@ SN
a 1« -1 - a)? (d}’I)
_(-ou(l-0a) (-oud-ao _(-af |\
uh(1 — @) uj(1 — ) a (50)
0
- 0
1 - a)u(1 - oz)

u(l— a)
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_zuf(z)

Let ri(z) = W@

(Sn

Expression (51) is a measure of the concavity of u;; in studies of portfolio choice,
it is called the Arrow-Pratt measure of relative risk aversion. For our purposes,
it suffices to know that r|(z) and 1 (z) are strictly positive. Rewrite system (50) as

—r(a) ri(a) -(1-a) dx, 0
o l-a -1-a)? | dy, | = 0
_(-ay

ra(l —a) —r(l —a) dp —ra(l — a)de,

a
This system can be solved using Cramer’s rule to get

_ —R(-R)(1 - a)

Xm D €2
- —a)+
iy = L ORIR(A ) *al (52)
D
RiR
dp = lD 2 dle
where Ry =nr(a) >0, Ri=r(l—a)>0
RV
and DER’(IT"‘)+R2(1—0¢)
ul(e) | Wl —a)
=-(l-a(L1=+ > 0.
(u;(a) uy(l1 — a)
By the Implicit Function Theorem,
an _ —Ra(l = Ri)(1 — o)
382 D
 _ Rl =R)1= o)
1962 D
@ _ (1 — )R2[R|(1 — @) + ] (53)
382 D
92 _ (I = R [Ri(1 — ) + ]
082 D
ap R1R2

382 D
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We conclude that when the initial endowments are e; = e- = 1, an increase of
e;, the endowment of good 2, leads to a rise in the price of good 1 relative to
good 2 (dp/de> > 0), and a rise in the consumption of good 2 by consumer 1
(dy1/de; > 0). What happens to good 1 depends upon the utility functions.

EXERCISES

15.26 Show that the utility functions (38) include Cobb-Douglas preferences.

15.27 Show that equation (44) is implied by equations (42), (45) and (46).

15.28 Show that when e; = e, = 1, (48) is the unique solution of system (47).

15.29 Verify the expressions in (52) and (53).

15.30 Compute the exact partial derivatives in (53) for u,(z) = uy(z) = Inzanda = 1/2.
15.31 Compute the comparative statics that results from a change in e,, holding e fixed.
15.32 Compute and interpret the comparative statics that results from an increase in a.

15.5 THE INVERSE FUNCTION THEOREM (optional)

In this section, we present one more approach to the Implicit Function Theorem.
This approach presents another illustration of the basic paradigm of calculus,
namely, that one can learn a lot about a nonlinear function from its linear ap-
proximation. In this context, to solve a problem about the behavior of a nonlinear
function F in the vicinity of a given point x”, take the derivative DFy- of F at x*,
use the tools of linear algebra to glean the appropriate information about the linear
function DFY., and use the techniques of calculus to transfer this information back
to the original F.

For example, suppose that F is a C' function from R" to R™, that b is a given
po. in the target space R™, and that xg is a solution of the system of equations

F(x) = ny. (54)

A basic question of equilibrium analysis is: what happens if we vary by, a little to
b;? Does the corresponding equation F(x) = b still have a solution? If it does,
how many solutions does it have?

The main purpose of Chapter 7 was to answer these questions for a linear
system of equations

Ax = by. (55)
The answers depended on the size and rank of A.

If A is m X n, then (55) has a solution for every right-hand side by if and only
if m = n and the rank of A is m; (55) has'at most one solution for every right
hand side by if and only if m = n and the rank of A is n.






