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MULTICOLLINEARITY:
WHAT HAPPENS IF
THE REGRESSORS
ARE CORRELATED?

There is no pair of words that is more misused both in econometrics texts and in
the applied literature than the pair “multi-collinearity problem.” That many of our
explanatory variables are highly collinear is a fact of life. And it is completely clear
that there are experimental designs X'X [i.e., data matrix] which would be much
preferred to the designs the natural experiment has provided us [i.e., the sample at
hand]. But a complaint about the apparent malevolence of nature is not at all con-
structive, and the ad hoc cures for a bad design, such as stepwise regression or
ridge regression, can be disastrously inappropriate. Better that we should rightly
accept the fact that our non-experiments [i.e., data not collected by designed ex-
periments] are sometimes not very informative about parameters of interest.!

Assumption 10 of the classical linear regression model (CLRM) is that
there is no multicollinearity among the regressors included in the regres-
sion model. In this chapter we take a critical look at this assumption by
seeking answers to the following questions:

1. What is the nature of multicollinearity?

2. Is multicollinearity really a problem?

3. What are its practical consequences?

4. How does one detect it?

5. What remedial measures can be taken to alleviate the problem of
multicollinearity?

'Edward E. Leamer, “Model Choice and Specification Analysis,” in Zvi Griliches and
Michael D. Intriligator, eds., Handbook of Econometrics, vol. I, North Holland Publishing
Company, Amsterdam, 1983, pp. 300-301.
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In this chapter we also discuss Assumption 7 of the CLRM, namely, that
the number of observations in the sample must be greater than the number
of regressors, and Assumption 8, which requires that there be sufficient
variability in the values of the regressors, for they are intimately related to
the assumption of no multicollinearity. Arthur Goldberger has christened
Assumption 7 as the problem of micronumerosity,> which simply means
small sample size.

10.1 THE NATURE OF MULTICOLLINEARITY

The term multicollinearity is due to Ragnar Frisch.? Originally it meant the
existence of a “perfect,” or exact, linear relationship among some or all
explanatory variables of a regression model.* For the k-variable regression
involving explanatory variable Xy, X5, ..., Xz (where X; = 1 for all observa-
tions to allow for the intercept term), an exact linear relationship is said to
exist if the following condition is satishied:

MXi+ X+ X =0 (10.1.1)

where Ay, A2, ..., Ax are constants such that not all of them are zero simulta-
neously.®

Today, however, the term multicollinearity is used in a broader sense to
include the case of perfect multicollinearity, as shown by (10.1.1), as well
as the case where the X variables are intercorrelated but not perfectly so, as
follows®:

MmXi+ X0+ X +v; =0 (10.1.2)
where v; is a stochastic error term.

To see the difference between perfect and less than perfect multicollinear-
ity, assume, for example, that A, # 0. Then, (10.1.1) can be written as

M Az Al
X, = Ay, _x. .. _Zfx,. 10.1.3
2i )»z 1i )»z 3 A ki ( )

2See his A Course in Econometrics, Harvard University Press, Cambridge, Mass., 1991,
p. 249.

3Ragnar Frisch, Statistical Confluence Analysis by Means of Complete Regression Systems,
Institute of Economics, Oslo University, publ. no. 5, 1934.

4Strictly speaking, multicollinearity refers to the existence of more than one exact linear
relationship, and collinearity refers to the existence of a single linear relationship. But this dis-
tinction is rarely maintained in practice, and multicollinearity refers to both cases.

>The chances of one’s obtaining a sample of values where the regressors are related in this
fashion are indeed very small in practice except by design when, for example, the number of
observations is smaller than the number of regressors or if one falls into the “dummy variable
trap” as discussed in Chap. 9. See exercise 10.2.

®Tf there are only two explanatory variables, intercorrelation can be measured by the zero-
order or simple correlation coefficient. But if there are more than two X variables, intercorre-
lation can be measured by the partial correlation coefficients or by the multiple correlation
coefficient R of one X variable with all other X variables taken together.
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which shows how X5 is exactly linearly related to other variables or how it
can be derived from a linear combination of other X variables. In this situa-
tion, the coefficient of correlation between the variable X, and the linear
combination on the right side of (10.1.3) is bound to be unity.

Similarly, if A, # 0, Eq. (10.1.2) can be written as

A A3 A 1
X = = x, = By - M 2, 10.1.4
2i )»2 1i )»2 3 )¥2 ki )¥2 i ( )

which shows that X5 is not an exact linear combination of other X’s because
it is also determined by the stochastic error term v;.

As a numerical example, consider the following hypothetical data:

Xz Xs X3

10 50 52
15 75 75
18 90 97
24 120 129
30 150 152

It is apparent that Xs; = 5X5;. Therefore, there is perfect collinearity be-
tween X; and X3 since the coefficient of correlation 7,3 is unity. The variable
X3 was created from X; by simply adding to it the following numbers, which
were taken from a table of random numbers: 2, 0, 7, 9, 2. Now there is no
longer perfect collinearity between X, and X3 However, the two variables
are highly correlated because calculations will show that the coefficient of
correlation between them is 0.9959.

The preceding algebraic approach to multicollinearity can be portrayed
succinctly by the Ballentine (recall Figure 3.9, reproduced in Figure 10.1).
In this figure the circles ¥, X5, and X5 represent, respectively, the variations
in Y (the dependent variable) and X5 and X3 (the explanatory variables). The
degree of collinearity can be measured by the extent of the overlap (shaded
area) of the X; and X; circles. In Figure 10.1a there is no overlap between X,
and X3, and hence no collinearity. In Figure 10.15 through 10.1e there is a
“low” to “high” degree of collinearity—the greater the overlap between X,
and X (i.e., the larger the shaded area), the higher the degree of collinear-
ity. In the extreme, if X, and X3 were to overlap completely (or if X, were
completely inside X3, or vice versa), collinearity would be perfect.

In passing, note that multicollinearity, as we have defined it, refers only to
linear relationships among the X variables. It does not rule out nonlinear re-
lationships among them. For example, consider the following regression
model:

Y, = Bo+ BuXi + B X+ B X +u (10.1.5)

where, say, Y = total cost of production and X = output. The variables X?
(output squared) and X} (output cubed) are obviously functionally related



Gujarati: Basic
Econometrics, Fourth
Edition

1. Relaxing the 10. Multicollinearity: What © The McGraw-Hill
Assumptions of the Happens if the Regressors
Classical Model are Correlated?

344 PART TWO: RELAXING THE ASSUMPTIONS OF THE CLASSICAL MODEL

FIGURE 10.1

Q‘ NS

(a) No collinearity (b) Low collinearity
(¢) Moderate collinearity (d) High collinearity (e

The Ballentine view of multicollinearity.

to X;, but the relationship is nonlinear. Strictly, therefore, models such as
(10.1.5) do not violate the assumption of no multicollinearity. However, in
concrete applications, the conventionally measured correlation coefficient
will show X;, X?, and X? to be highly correlated, which, as we shall show,
will make it difficult to estimate the parameters of (10.1.5) with greater pre-
cision (i.e., with smaller standard errors).

Why does the classical linear regression model assume that there is no
multicollinearity among the X’s? The reasoning is this: If multicollinearity
is perfect in the sense of (10.1.1), the regression coefficients of the
X variables are indeterminate and their standard errors are infinite.
If multicollinearity is less than perfect, as in (10.1.2), the regression
coefficients, although determinate, possess large standard errors (in
relation to the coefficients themselves), which means the coefficients
cannot be estimated with great precision or accuracy. The proofs of
these statements are given in the following sections.
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There are several sources of multicollinearity. As Montgomery and Peck
note, multicollinearity may be due to the following factors’:

1. The data collection method employed, for example, sampling over a
limited range of the values taken by the regressors in the population.

2. Constraints on the model or in the population being sampled. For
example, in the regression of electricity consumption on income () and
house size (X3) there is a physical constraint in the population in that fami-
lies with higher incomes generally have larger homes than families with
lower incomes.

3. Model specification, for example, adding polynomial terms to a re-
gression model, especially when the range of the X variable is small.

4. An overdetermined model. This happens when the model has more
explanatory variables than the number of observations. This could happen
in medical research where there may be a small number of patients about
whom information is collected on a large number of variables.

An additional reason for multicollinearity, especially in time series data,
may be that the regressors included in the model share a common trend,
that is, they all increase or decrease over time. Thus, in the regression of
consumption expenditure on income, wealth, and population, the regres-
sors income, wealth, and population may all be growing over time at more
or less the same rate, leading to collinearity among these variables.

10.2 ESTIMATION IN THE PRESENCE OF
PERFECT MULTICOLLINEARITY

It was stated previously that in the case of perfect multicollinearity the re-
gression coefficients remain indeterminate and their standard errors are
infinite. This fact can be demonstrated readily in terms of the three-variable
regression model. Using the deviation form, where all the variables are
expressed as deviations from their sample means, we can write the three-
variable regression model as

Vi = Baxai + Paxai + h (10.2.1)
Now from Chapter 7 we obtain

i Eam)(Dd) - () (Eaw) g,

) xg) - (2 xZix3i)2

"Douglas Montgomery and Elizabeth Peck, Iniroduction to Linear Regression Analysis, John
Wiley & Sons, New York, 1982, pp. 289-290. See also R. L. Mason, R. F. Gunst, and J. T. Web-
ster, “Regression Analysis and Problems of Multicollinearity,” Communications in Statistics A,
vol. 4, no. 3, 1975, pp. 277-292; R. F. Gunst, and R. L. Mason, “Advantages of Examining Mul-
ticollinearities in Regression Analysis,” Biometrics, vol. 33, 1977, pp. 249-260.
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o ) - )
x5 ) (X x%) — (X xarxsi)

Assume that X3, = 1X5;, where X is a nonzero constant (e.g., 2, 4, 1.8, etc.).
Substituting this into (7.4.7), we obtain

5, = L) 022 8) - (0 Xye) (. 23
(Cx5) 02 2 a3) =22 (2 x%i)z (10.2.2)

0
0
which is an indeterminate expression. The reader can verify that 8; is also
indeterminate.?

Why do we obtain the result shown in (10.2.2)? Recall the meaning of j,:
It gives the rate of change in the average value of Y as X, changes by a unit,
holding X3 constant. But if X3 and X; are perfectly collinear, there is no way
X; can be kept constant: As X, changes, so does X3 by the factor A. What it
means, then, is that there is no way of disentangling the separate influences
of X, and X; from the given sample: For practical purposes X, and X; are
indistinguishable. In applied econometrics this problem is most damaging
since the entire intent is to separate the partial effects of each X upon the
dependent variable.

To see this differently, let us substitute X3; = A X,; into (10.2.1) and obtain
the following [see also (7.1.9)]:

Vi = Baxa: + Ba(hxai) + i

= (B2 + 2B3)x2i + i (10.2.3)
= axy; + 1
where R R
a= B+ ArB3) (10.2.4)

Applying the usual OLS formula to (10.2.3), we get

A 5 5 X2i Vi
b= B+ 1fr) = = 2 (10.2.5)
DX
Therefore, although we can estimate @ uniquely, there is no way to estimate
B> and B3 uniquely; mathematically

a =B+ 1B (10.2.6)

8Another way of seeing this is as follows: By definition, the coefficient of correlation

between X; and Xj, 723, is ) x2i%3;/4/ Zx%l Zx; If 1’§3 =1, i.e., perfect collinearity between X,
and X3, the denominator of (7.4.7) will be zero, making estimation of 8, (or of g3) impossible.
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gives us only one equation in two unknowns (note 1 is given) and there is an
infinity of solutions to (10.2.6) for given values of @ and A. To put this idea
in concrete terms, let @ = 0.8 and A = 2. Then we have

0.8 =5 +2p (10.2.7)
or

fo=0.8 — 25 (10.2.8)

Now choose a value of B3 arbitrarily, and we will have a solution for Bs.
Choose another value for s, and we will have another solution for 8. No
matter how hard we try, there is no unique value for f,.

The upshot of the preceding discussion is that in the case of perfect mul-
ticollinearity one cannot get a unique solution for the individual regression
coefficients. But notice that one can get a unique solution for linear combi-
nations of these coefficients. The linear combination (8; + A83) is uniquely
estimated by «, given the value of 1.°

In passing, note that in the case of perfect multicollinearity the vari-
ances and standard errors of £, and B3 individually are infinite. (See exer-
cise 10.21.)

10.3 ESTIMATION IN THE PRESENCE OF “HIGH”
BUT “IMPERFECT” MULTICOLLINEARITY

The perfect multicollinearity situation is a pathological extreme. Generally,
there is no exact linear relationship among the X variables, especially in
data involving economic time series. Thus, turning to the three-variable
model in the deviation form given in (10.2.1), instead of exact multi-
collinearity, we may have

X3; = AXo; + vy (10.3.1)

where A #£ 0 and where v; is a stochastic error term such that > xv; = 0.
(Why?)

Incidentally, the Ballentines shown in Figure 10.15 to 10.le represent
cases of imperfect collinearity.

In this case, estimation of regression coefficients 8; and 83 may be possi-
ble. For example, substituting (10.3.1) into (7.4.7), we obtain

4y = S ixa) (M2 X x5, + 2 vi) — (WX yixai + X0 yivi) (A Y43,
Y5 (A2 a5 4+ vi) - (v szzi)z

where use is made of > x;v; = 0. A similar expression can be derived for 8.

(10.3.2)

°In econometric literature, a function such as (8, 4 A83) is known as an estimable function.
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Now, unlike (10.2.2), there is no reason to believe a priori that (10.3.2)
cannot be estimated. Of course, if v; is sufficiently small, say, very close to
zero, (10.3.1) will indicate almost perfect collinearity and we shall be back
to the indeterminate case of (10.2.2).

10.4 MULTICOLLINEARITY: MUCH ADO ABOUT NOTHING?
THEORETICAL CONSEQUENCES OF MULTICOLLINEARITY

Recall that if the assumptions of the classical model are satisfied, the OLS
estimators of the regression estimators are BLUE (or BUE, if the normality
assumption is added). Now it can be shown that even if multicollinearity is
very high, as in the case of near multicollinearity, the OLS estimators still
retain the property of BLUE.!° Then what is the multicollinearity fuss all
about? As Christopher Achen remarks (note also the Leamer quote at the
beginning of this chapter):

Beginning students of methodology occasionally worry that their independent
variables are correlated—the so-called multicollinearity problem. But multi-
collinearity violates no regression assumptions. Unbiased, consistent estimates
will occur, and their standard errors will be correctly estimated. The only effect of
multicollinearity is to make it hard to get coefficient estimates with small stan-
dard error. But having a small number of observations also has that effect, as does
having independent variables with small variances. (In fact, at a theoretical level,
multicollinearity, few observations and small variances on the independent vari-
ables are essentially all the same problem.) Thus “What should I do about multi-
collinearity?” is a question like “What should I do if I don't have many observa-
tions?” No statistical answer can be given.!!

To drive home the importance of sample size, Goldberger coined the term
micronumerosity, to counter the exotic polysyllabic name multicollinear-
ity. According to Goldberger, exact micronumerosity (the counterpart of
exact multicollinearity) arises when n, the sample size, is zero, in which
case any kind of estimation is impossible. Near micronumerosity, like near
multicollinearity, arises when the number of observations barely exceeds
the number of parameters to be estimated.

Leamer, Achen, and Goldberger are right in bemoaning the lack of atten-
tion given to the sample size problem and the undue attention to the multi-
collinearity problem. Unfortunately, in applied work involving secondary
data (i.e., data collected by some agency, such as the GNP data collected by
the government), an individual researcher may not be able to do much
about the size of the sample data and may have to face “estimating problems

10Since near multicollinearity per se does not violate the other assumptions listed in
Chap. 7, the OLS estimators are BLUE as indicated there.

UChristopher H. Achen, Interpreting and Using Regression, Sage Publications, Beverly Hills,
Calif., 1982, pp. 82-83.
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important enough to warrant our treating it [i.e., multicollinearity] as a
violation of the CLR [classical linear regression] model.”!?

First, it is true that even in the case of near multicollinearity the OLS es-
timators are unbiased. But unbiasedness is a multisample or repeated sam-
pling property. What it means is that, keeping the values of the X variables
fixed, if one obtains repeated samples and computes the OLS estimators for
each of these samples, the average of the sample values will converge to the
true population values of the estimators as the number of samples increases.
But this says nothing about the properties of estimators in any given sample.

Second, it is also true that collinearity does not destroy the property of
minimum variance: In the class of all linear unbiased estimators, the OLS
estimators have minimum variance; that is, they are efficient. But this does
not mean that the variance of an OLS estimator will necessarily be small (in
relation to the value of the estimator) in any given sample, as we shall
demonstrate shortly.

Third, multicollinearity is essentially a sample (regression) phenomenon in
the sense that even if the X variables are not linearly related in the popu-
lation, they may be so related in the particular sample at hand: When we
postulate the theoretical or population regression function (PRF), we be-
lieve that all the X variables included in the model have a separate or inde-
pendent influence on the dependent variable Y. But it may happen that in
any given sample that is used to test the PRF some or all of the X variables
are so highly collinear that we cannot isolate their individual influence on Y.
So to speak, our sample lets us down, although the theory says that all the
X’s are important. In short, our sample may not be “rich” enough to accom-
modate all X variables in the analysis.

As an illustration, reconsider the consumption-income example of
Chapter 3. Economists theorize that, besides income, the wealth of the con-
sumer is also an important determinant of consumption expenditure. Thus,
we may write

Consumption; = f; + B, Income; + B3 Wealth; + u;

Now it may happen that when we obtain data on income and wealth, the
two variables may be highly, if not perfectly, correlated: Wealthier people
generally tend to have higher incomes. Thus, although in theory income and
wealth are logical candidates to explain the behavior of consumption ex-
penditure, in practice (i.e., in the sample) it may be difficult to disentangle
the separate influences of income and wealth on consumption expenditure.

Ideally, to assess the individual effects of wealth and income on con-
sumption expenditure we need a sufficient number of sample observations
of wealthy individuals with low income, and high-income individuals with

12peter Kennedy, A Guide to Econometrics, 3d ed., The MIT Press, Cambridge, Mass., 1992,
p. 177.
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low wealth (recall Assumption 8). Although this may be possible in cross-
sectional studies (by increasing the sample size), it is very difficult to
achieve in aggregate time series work.

For all these reasons, the fact that the OLS estimators are BLUE despite
multicollinearity is of little consolation in practice. We must see what
happens or is likely to happen in any given sample, a topic discussed in the
following section.

10.5 PRACTICAL CONSEQUENCES OF MULTICOLLINEARITY

In cases of near or high multicollinearity, one is likely to encounter the fol-
lowing consequences:

1. Although BLUE, the OLS estimators have large variances and covari-
ances, making precise estimation difficult.

2. Because of consequence 1, the confidence intervals tend to be much
wider, leading to the acceptance of the “zero null hypothesis” (i.e., the true
population coefficient is zero) more readily.

3. Also because of consequence 1, the ¢ ratio of one or more coefficients
tends to be statistically insignificant.

4. Although the t ratio of one or more coefficients is statistically insigni-
ficant, R?, the overall measure of goodness of fit, can be very high.

5. The OLS estimators and their standard errors can be sensitive to
small changes in the data.

The preceding consequences can be demonstrated as follows.

Large Variances and Covariances of OLS Estimators

To see large variances and covariances, recall that for the model (10.2.1) the
variances and covariances of 8, and 85 are given by

2

~ leX
L 7.4.12
var{fa) szzi(l _”223) ( )
(B3) o’ (7.4.15)
_ 2
cov (By, Ba) = 1239 (1.4.17)

(1- ”223)\/ PIECTD I

where 7,3 is the coefficient of correlation between X5 and X.

It is apparent from (7.4.12) and (7.4.15) that as 7,3 tends toward 1, that is,
as collinearity increases, the variances of the two estimators increase and in
the limit when r,5 = 1, they are infinite. It is equally clear from (7.4.17) that
as 7,3 increases toward 1, the covariance of the two estimators also in-
creases in absolute value. [Note: cov(Bs, B3) = cov(Bs, £2).]
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The speed with which variances and covariances increase can be seen
with the variance-inflating factor (VIF), which is defined as

VIF— 1+ (10.5.1)

(1 - 3)
VIF shows how the variance of an estimator is inflated by the presence of
multicollinearity. As 77, approaches 1, the VIF approaches infinity. That is,
as the extent of collinearity increases, the variance of an estimator in-
creases, and in the limit it can become infinite. As can be readily seen, if
there is no collinearity between X, and X3, VIF will be 1.
Using this definition, we can express (7.4.12) and (7.4.15) as

2

~ g

var (‘32) = Z—)C%IVIF (10.5.2)
A 02

var (‘33) = Z—x;VIF (10.5.3)

which show that the variances of 8, and f; are directly proportional to the
VIF.

To give some idea about how fast the variances and covariances increase
as r3 increases, consider Table 10.1, which gives these variances and
covariances for selected values of 7;5. As this table shows, increases in 754

THE EFFECT OF INCREASING r,5 ON VAR (4,) AND COV (45, fs)

var(f,)(ra # 0)

Value of 3 VIF var(f;) var(8,)(rs3 = 0) cov (B2, f3)
(1) 2 @) (4) (5)
o2
0.00 1.00 -~ = A — 0
Do X5
0.50 1.33 1.833 x A 1.33 0.67 x B
0.70 1.96 1.96 < A 1.96 1.837 x B
0.80 2.78 2.78 < A 2.78 222 x B
0.90 576 526 < A 5.26 473 x B
0.95 10.26 10.26 < A 10.26 9.74 x B
0.97 16.92 16.92 x A 16.92 16.41 x B
0.99 50.25 50.25 x A 50.25 49.75 x B
0.995 100.00 100.00 < A 100.00 99.50 x B
0.999 500.00 500.00 < A 500.00 499.50 x B
Note: A= o
> X ,
B_ —o
VX5 X
x = times

*To find out the effect of increasing ro3 on var (f83), note that A = o2/ ngi when 23 = 0, but the variance
and covariance magnifying factors remain the same.
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var ( B,)

1 1 1 1
0 0.5 0.8 09 1.0

"33

FIGURE 10.2 The behavior of var (/§2) as a function of rss.

have a dramatic effect on the estimated variances and covariances of the
OLS estimators. When 7,3 = 0.50, the var () is 1.33 times the variance
when r; 3 is zero, but by the time r, 3 reaches 0.95 it is about 10 times as high
as when there is no collinearity. And lo and behold, an increase of 7,3 from
0.95 to 0.995 makes the estimated variance 100 times that when collinearity
is zero. The same dramatic effect is seen on the estimated covariance. All
this can be seen in Figure 10.2.

The results just discussed can be easily extended to the k-variable model.
In such a model, the variance of the kth coefficient, as noted in (7.5.6), can
be expressed as:

. o2 1
var(p;) = Z—xlz (1——R?> (7.5.6)

where 3; = (estimated) partial regression coefficient of regressor X;
R? = R? in the regression of X; on the remaining (k — 2) regressions
[Note: There are (k — 1) regressors in the k-variable regres-
sion model.]
Yo =YX - X))

We can also write (7.5.6) as

2
~ g

As you can see from this expression, var(§;) is proportional to o and VIF
but inversely proportional to inz. Thus, whether var(g;) is large or small
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will depend on the three ingredients: (1) o2, (2) VIF, and (3) lez The last
one, which ties in with Assumption 8 of the classical model, states that the
larger the variability in a regressor, the smaller the variance of the coetfi-
cient of that regressor, assuming the other two ingredients are constant, and
therefore the greater the precision with which that coefficient can be
estimated.
Before proceeding further, it may be noted that the inverse of the VIF is
called tolerance (TOL). That is,
TOL,

=(1- R?) (10.5.5)

~ VIF,
When R? =1 (i.e., perfect collinearity), TOL; = 0 and when R? =0 (i.e., no
collinearity whatsoever), TOL; is 1. Because of the intimate connection be-
tween VIF and TOL, one can use them interchangeably.

Wider Confidence Intervals

TABLE 10.2

Because of the large standard errors, the confidence intervals for the relevant
population parameters tend to be larger; as can be seen from Table 10.2. For
example, when ;3 = 0.95, the confidence interval for 8, is larger than when
723 = 0 by a factor of +/10.26, or about 3.

Therefore, in cases of high multicollinearity, the sample data may be com-
patible with a diverse set of hypotheses. Hence, the probability of accepting
a false hypothesis (i.e., type II error) increases.

THE EFFECT OF INCREASING COLLINEARITY
ON :I'HE 95% COI\IF|DENCE INTERVAL FOR
Bo: B £ 1.96 se (B2)

Value of ro3 95% confidence interval for g
~ (72
0.00 o196 | =
2o X5
2
0.50 B2 +£1.96,/(1.39) | ——
2o X5,
2
0.95 fo +1.96,/(10.26) | ——
2oX3;
2
0.995 B2 +1.96,/(100) | ——
2o X5
2
0.999 B2 £ 1.96,/(500) | ——
2o X5,

Note: We are using the normal distribution because
o2 is assumed for convenience to be known. Hence the
use of 1.96, the 95% confidence factor for the normal
distribution.

The standard errors corresponding to the various 23
values are obtained from Table 10.1.
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“Insignificant” t Ratios

Recall that to test the null hypothesis that, say, 8, = 0, we use the ¢ ratio,
that is, 8,/se (8;), and compare the estimated ¢ value with the critical ¢ value
from the ¢ table. But as we have seen, in cases of high collinearity the esti-
mated standard errors increase dramatically, thereby making the ¢ values
smaller. Therefore, in such cases, one will increasingly accept the null hy-
pothesis that the relevant true population value is zero.!?

A High R? but Few Significant t Ratios

Consider the k-variable linear regression model:
Yi=p1+BXoi + B3 Xa + - + B X + s

In cases of high collinearity, it is possible to find, as we have just noted, that
one or more of the partial slope coefficients are individually statistically in-
significant on the basis of the 7 test. Yet the R? in such situations may be so
high, say, in excess of 0.9, that on the basis of the F test one can convincingly
reject the hypothesis that 8, = B3 = --- = B = 0. Indeed, this is one of the
signals of multicollinearity—insignificant ¢ values but a high overall R? (and
a significant F value)!

We shall demonstrate this signal in the next section, but this outcome
should not be surprising in view of our discussion on individual vs. joint
testing in Chapter 8. As you may recall, the real problem here is the covari-
ances between the estimators, which, as formula (7.4.17) indicates, are re-
lated to the correlations between the regressors.

Sensitivity of OLS Estimators and Their Standard Errors
to Small Changes in Data

As long as multicollinearity is not perfect, estimation of the regression coet-
ficients is possible but the estimates and their standard errors become very
sensitive to even the slightest change in the data.

To see this, consider Table 10.3. Based on these data, we obtain the fol-
lowing multiple regression:

Y, = 1.1939 + 0.4463Xy + 0.0030X3
(0.7737) (0.1848)  (0.0851)
r=(1.5431) (2.4151)  (0.0358) (10.5.6)
R>=0.8101 13 =0.5523
cov(By, Bz) = —0.00868  df=2

3In terms of the confidence intervals, g = 0 value will lie increasingly in the acceptance
region as the degree of collinearity increases.
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TABLE 10.3 TABLE 10.4

HYPOTHETICAL DATAON Y, X5, AND X3 HYPOTHETICAL DATAON Y, X5, AND X3
Y X2 X3 Y X2 X3
1 2 4 1 2 4
2 0 2 2 0 2
3 4 12 3 4 0
4 6 0 4 6 12
5 8 16 5 8 16

Regression (10.5.6) shows that none of the regression coefficients is individ-
ually significant at the conventional 1 or 5 percent levels of significance, al-
though 4, is significant at the 10 percent level on the basis of a one-tail  test.

Now consider Table 10.4. The only difference between Tables 10.3 and
10.4 is that the third and fourth values of X3 are interchanged. Using the
data of Table 10.4, we now obtain

Y, = 1.2108 4+ 0.4014X,; + 0.0270X5
(0.7480) (0.2721)  (0.1252)
t=(1.6187) (1.4752) (0.2158) (10.5.7)
R =0.8143  r,3=0.8285
cov(fs, B3) = —0.0282  df=2

As a result of a slight change in the data, we see that B,, which was statis-
tically significant before at the 10 percent level of significance, is no longer
significant even at that level. Also note that in (10.5.6) cov (B, 83) = —0.00868
whereas in (10.5.7) it is —0.0282, a more than threefold increase. All these
changes may be attributable to increased multicollinearity: In (10.5.6) 7,3 =
0.5523, whereas in (10.5.7) it is 0.8285. Similarly, the standard errors of £,
and s increase between the two regressions, a usual symptom of collinearity.

We noted earlier that in the presence of high collinearity one cannot esti-
mate the individual regression coefficients precisely but that linear combi-
nations of these coefficients may be estimated more precisely. This fact can
be substantiated from the regressions (10.5.6) and (10.5.7). In the first re-
gression the sum of the two partial slope coefficients is 0.4493 and in the
second it is 0.4284, practically the same. Not only that, their standard errors
are practically the same, 0.1550 vs. 0.1823.1* Note, however, the coefficient
of X3 has changed dramatically, from 0.003 to 0.027.

14These standard errors are obtained from the formula

se (B2 + F3) = yvar (B2) +var (f3) +2 cov (5, f3)

Note that increasing collinearity increases the variances of £ and g3, but these variances may
be offset if there is high negative covariance between the two, as our results clearly point out.



Gujarati: Basic
Econometrics, Fourth
Edition

1. Relaxing the 10. Multicollinearity: What © The McGraw-Hill
Assumptions of the Happens if the Regressors
Classical Model are Correlated?

356 PART TWO: RELAXING THE ASSUMPTIONS OF THE CLASSICAL MODEL

Consequences of Micronumerosity

In a parody of the consequences of multicollinearity, and in a tongue-in-
cheek manner, Goldberger cites exactly similar consequences of micro-
numerosity, that is, analysis based on small sample size.!> The reader is
advised to read Goldberger’s analysis to see why he regards micronumeros-
ity as being as important as multicollinearity.

10.6 AN ILLUSTRATIVE EXAMPLE: CONSUMPTION EXPENDITURE
IN RELATION TO INCOME AND WEALTH

TABLE 10.5

To illustrate the various points made thus far, let us reconsider the con-
sumption-income example of Chapter 3. In Table 10.5 we reproduce the
data of Table 3.2 and add to it data on wealth of the consumer. If we assume
that consumption expenditure is linearly related to income and wealth,
then, from Table 10.5 we obtain the following regression:

Y; = 24.7747 + 0.9415X5; —  0.0424X5;
(6.7525) (0.8229) (0.0807)
= (3.6690) (1.1442)  (~0.5261) (10.6.1)
R?= 0.9635 R?>=0.9531 df=7
Regression (10.6.1) shows that income and wealth together explain about
96 percent of the variation in consumption expenditure, and yet neither of

the slope coefficients is individually statistically significant. Moreover, not
only is the wealth variable statistically insignificant but also it has the wrong

HYPOTHETICAL DATA ON CONSUMPTION
EXPENDITURE Y, INCOME X, AND WEALTH X3

v, $ X, 8 X3 8
70 80 810
65 100 1009
90 120 1273
95 140 1425

110 160 1633

115 180 1876

120 200 2052

140 220 2201

155 240 2435

150 260 2686

5Goldberger, op. cit., pp. 248-250.
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ANOVA TABLE FOR THE CONSUMPTION-INCOME-WEALTH EXAMPLE

Source of variation S8 df MSS
Due to regression 8,565.5541 2 4,282.7770
Due to residual 324.4459 7 46.3494

sign. A priori, one would expect a positive relationship between consump-
tion and wealth. Although 8, and f; are individually statistically insignifi-
cant, if we test the hypothesis that g, = 83 = 0 simultaneously, this hypo-
thesis can be rejected, as Table 10.6 shows. Under the usual assumption we
obtain

_ 4282.7770

F = 163494 — 92.4019 (10.6.2)
This F value is obviously highly significant.

It is interesting to look at this result geometrically. (See Figure 10.3.)
Based on the regression (10.6.1), we have established the individual 95%
confidence intervals for 8, and B; following the usual procedure discussed
in Chapter 8. As these intervals show, individually each of them includes the
value of zero. Therefore, individually we can accept the hypothesis that the

Joint 95% confidence
interval for 5, and 33
95% confidence

interval for B3 \
\ ;
~1.004 \ \ 2.887

95% confidence
interval for 3,

-0.2332

Individual confidence intervals for g, and 83 and joint confidence interval (ellipse) for g2 and Bs.
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two partial slopes are zero. But, when we establish the joint confidence in-
terval to test the hypothesis that 8, = 83 = 0, that hypothesis cannot be ac-
cepted since the joint confidence interval, actually an ellipse, does not in-
clude the origin.'¢ As already pointed out, when collinearity is high, tests on
individual regressors are not reliable; in such cases it is the overall F test
that will show if Y'is related to the various regressors.

Our example shows dramatically what multicollinearity does. The fact
that the F test is significant but the 7 values of X; and X3 are individually in-
significant means that the two variables are so highly correlated that it is
impossible to isolate the individual impact of either income or wealth on
consumption. As a matter of fact, if we regress X3 on X,, we obtain

Xy = 7.5454 + 10.1909X,
(29.4758)  (0.1643) (10.6.3)
t = (0.2560) (62.0405) R?=0.9979
which shows that there is almost perfect collinearity between X3 and X5.
Now let us see what happens if we regress Y on X; only:
Y; = 244545 + 0.5091X
(6.4138)  (0.0357) (10.6.4)
t= (3.8128) (14.2432) R?=10.9621
In (10.6.1) the income variable was statistically insignificant, whereas now
it is highly significant. If instead of regressing Y on X;, we regress it on Xj,
we obtain
Y, =24411 +  0.0498X3
(6.874)  (0.0037) (10.6.5)
t= (3.551) (13.29) R? =0.9567
We see that wealth has now a significant impact on consumption expendi-
ture, whereas in (10.6.1) it had no effect on consumption expenditure.
Regressions (10.6.4) and (10.6.5) show very clearly that in situations of
extreme multicollinearity dropping the highly collinear variable will often
make the other X variable statistically significant. This result would suggest

that a way out of extreme collinearity is to drop the collinear variable, but
we shall have more to say about it in Section 10.8.

16As noted in Sec. 5.3, the topic of joint confidence interval is rather involved. The interested
reader may consult the reference cited there.
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10.7 DETECTION OF MULTICOLLINEARITY

Having studied the nature and consequences of multicollinearity, the nat-
ural question is: How does one know that collinearity is present in any given
situation, especially in models involving more than two explanatory vari-
ables? Here it is useful to bear in mind Kmenta’s warning:

1. Multicollinearity is a question of degree and not of kind. The meaningful
distinction is not between the presence and the absence of multicollinearity, but
between its various degrees.

2. Since multicollinearity refers to the condition of the explanatory variables
that are assumed to be nonstochastic, it is a feature of the sample and not of the
population.

Therefore, we do not “test for multicollinearity” but can, if we wish, measure
its degree in any particular sample.!”

Since multicollinearity is essentially a sample phenomenon, arising out
of the largely nonexperimental data collected in most social sciences, we do
not have one unique method of detecting it or measuring its strength. What
we have are some rules of thumb, some informal and some formal, but rules
of thumb all the same. We now consider some of these rules.

1. High R? but few significant ¢ ratios. As noted, this is the “classic”
symptom of multicollinearity. If R? is high, say, in excess of 0.8, the F test in
most cases will reject the hypothesis that the partial slope coefficients are
simultaneously equal to zero, but the individual ¢ tests will show that none or
very few of the partial slope coefficients are statistically different from zero.
This fact was clearly demonstrated by our consumption-income-wealth
example.

Although this diagnostic is sensible, its disadvantage is that “it is too
strong in the sense that multicollinearity is considered as harmful only
when all of the influences of the explanatory variables on Y cannot be dis-
entangled.”!®

2. High pair-wise correlations among regressors. Another suggested
rule of thumb is that if the pair-wise or zero-order correlation coefficient be-
tween two regressors is high, say, in excess of 0.8, then multicollinearity is a
serious problem. The problem with this criterion is that, although high
zero-order correlations may suggest collinearity, it is not necessary that they
be high to have collinearity in any specific case. To put the matter somewhat
technically, high zero-order correlations are a sufficient but not a necessary
condition for the existence of multicollinearity because it can exist even
though the zero-order or simple correlations ave comparatively low (say, less
than 0.50). To see this relationship, suppose we have a four-variable model:

Y; = B+ B2 Xoi + B3 Xz + BaXay + 1

7Jan Kmenta, Elements of Econometrics, 2d ed., Macmillan, New York, 1986, p. 431.
8Thid., p. 439.
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and suppose that
Xai = ha Xoi + Aa Xy

where 4, and A3 are constants, not both zero. Obviously, X} is an exact lin-
ear combination of X, and X, giving RZ,, = 1, the coefficient of determina-
tion in the regression of X4 on X; and Xa.

Now recalling the formula (7.11.5) from Chapter 7, we can write

2 2
Vi, + V5. — 2¥aoraat
Ri,; = 413 r242 ELEL (10.7.1)
— 133

But since R}, , = 1 because of perfect collinearity, we obtain

2 2
_ Fiy tF¥iy— 2rantasras

1
1—r32,

(10.7.2)

It is not difficult to see that (10.7.2) is satishied by 42 = 0.5,743 = 0.5, and
723 = —0.5, which are not very high values.

Therefore, in models involving more than two explanatory variables, the
simple or zero-order correlation will not provide an infallible guide to the
presence of multicollinearity. Of course, if there are only two explanatory
variables, the zero-order correlations will suffice.

3. Examination of partial correlations. Because of the problem just
mentioned in relying on zero-order correlations, Farrar and Glauber have
suggested that one should look at the partial correlation coefficients.'® Thus,
in the regression of Y on X5, X3, and X4, a finding that sz 34 is very high but
¥, 24 "2, andri, ,, are comparatively low may suggest that the variables
X5, X3, and X4 are highly intercorrelated and that at least one of these vari-
ables is superfluous.

Although a study of the partial correlations may be useful, there is no
guarantee that they will provide an infallible guide to multicollinearity, for
it may happen that both R? and all the partial correlations are sufficiently
high. But more importantly, C. Robert Wichers has shown?® that the Farrar-
Glauber partial correlation test is ineffective in that a given partial correla-
tion may be compatible with different multicollinearity patterns. The
Farrar-Glauber test has also been severely criticized by T. Krishna Kumar?!
and John O’Hagan and Brendan McCabe.??

19D, E. Farrar and R. R. Glauber, “Multicollinearity in Regression Analysis: The Problem
Revisited,” Review of Economics and Statistics, vol. 49, 1967, pp. 92-107.

20“The Detection of Multicollinearity: A Comment,” Review of Economics and Statistics,
vol. 57, 1975, pp. 365-366.

21“Multicollinearity in Regression Analysis,” Review of Economics and Statistics, vol. 57,
1975, pp. 366-368.

22“Tests for the Severity of Multicollinearity in Regression Analysis: A Comment,” Review of
Economics and Statistics, vol. 57, 1975, pp. 368-370.
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4. Auxiliary regressions. Since multicollinearity arises because one or
more of the regressors are exact or approximately linear combinations of
the other regressors, one way of finding out which X variable is related to
other X variables is to regress each X; on the remaining X variables and com-
pute the corresponding R?, which we designate as R?; each one of these re-
gressions is called an auxiliary regression, auxiliary to the main regression
of Y on the X’s. Then, following the relationship between F and R? estab-
lished in (8.5.11), the variable

R ey |k = 2)
E — X; X2X3 Xk .
—R . )/t—k+1) (10.7.3)

follows the F distribution withk — 2 and n — k + 1df. In Eq. (10.7.3) # stands
for the sample size, k stands for the number of explanatory variables in-
cluding the intercept term, and Rfcl_ oy iy 1S the coefficient of determination
in the regression of variable X; on the remaining X variables.?*

If the computed F exceeds the critical F; at the chosen level of signifi-
cance, it is taken to mean that the particular X; is collinear with other X’s; if
it does not exceed the critical F;, we say that it is not collinear with other X’s,
in which case we may retain that variable in the model. If F; is statistically
significant, we will still have to decide whether the particular X; should be
dropped from the model. This question will be taken up in Section 10.8.

But this method is not without its drawbacks, for

... if the multicollinearity involves only a few variables so that the auxiliary re-
gressions do not suffer from extensive multicollinearity, the estimated coefficients
may reveal the nature of the linear dependence among the regressors. Unfortu-
nately, if there are several complex linear associations, this curve fitting exercise
may not prove to be of much value as it will be difficult to identify the separate
interrelationships.?*

Instead of formally testing all auxiliary R? values, one may adopt Klien’s
rule of thumb, which suggests that multicollinearity may be a troublesome
problem only if the R? obtained from an auxiliary regression is greater than
the overall R?, that is, that obtained from the regression of Y on all the re-
gressors.?> Of course, like all other rules of thumb, this one should be used
judiciously.

5. Eigenvalues and condition index. If you examine the SAS output of
the Cobb-Douglas production function given in Appendix 7A.5 you will see

2For example, sz can be obtained by regressing X»; as follows: X»; = ay + a3 X3; + aa Xa; +
et ap X 1.

Z4George G. Judge, R. Carter Hill, William E. Griffiths, Helmut Liitkepohl, and Tsoung-Chao
Lee, Introduction to the Theory and Practice of Econometrics, John Wiley & Sons, New York,
1982, p. 621.

PLawrence R. Klien, An Introduction to Econometrics, Prentice-Hall, Englewood Cliffs,
N.J., 1962, p. 101.
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that SAS uses eigenvalues and the condition index to diagnose multi-
collinearity. We will not discuss eigenvalues here, for that would take us into
topics in matrix algebra that are beyond the scope of this book. From these
eigenvalues, however, we can derive what is known as the condition num-

ber k defined as

Maximum eigenvalue

~ Minimum eigenvalue

and the condition index (CI) defined as

= vk

Cl = Maximum eigenvalue
~ \ Minimum eigenvalue

Then we have this rule of thumb. If k is between 100 and 1000 there is
moderate to strong multicollinearity and if it exceeds 1000 there is severe
multicollinearity. Alternatively, if the CI (= /k) is between 10 and 30, there
is moderate to strong multicollinearity and if it exceeds 30 there is severe
multicollinearity.

For the illustrative example, k = 3.0/0.00002422 or about 123,864, and
CI = /123,864 = about 352; both k and the CI therefore suggest severe mul-
ticollinearity. Of course, k and CI can be calculated between the maximum
eigenvalue and any other eigenvalue, as is done in the printout. (Note: The
printout does not explicitly compute k, but that is simply the square of CI.)
Incidentally, note that a low eigenvalue (in relation to the maximum eigen-
value) is generally an indication of near-linear dependencies in the data.

Some authors believe that the condition index is the best available multi-
collinearity diagnostic. But this opinion is not shared widely. For us, then,
the CI is just a rule of thumb, a bit more sophisticated perhaps. But for fur-
ther details, the reader may consult the references.?®

6. Tolerance and variance inflation factor. We have already intro-
duced TOL and VIF. As R?, the coefficient of determination in the regression
of regressor X; on the remaining regressors in the model, increases toward
unity, that is, as the collinearity of X; with the other regressors increases,
VIF also increases and in the limit it can be infinite.

Some authors therefore use the VIF as an indicator of multicollinearity.
The larger the value of VIF, the more “troublesome” or collinear the vari-
able X;. As a rule of thumb, if the VIF of a variable exceeds 10, which will
happen if R? exceeds 0.90, that variable is said be highly collinear.”’

Of course, one could use TOL; as a measure of multicollinearity in view
of its intimate connection with VIF;. The closer is TOL; to zero, the greater
the degree of collinearity of that variable with the other regressors. On the

26Gee especially D. A. Belsley, E. Kuh, and R. E. Welsch, Regression Diagnostics: Identifying
Influential Data and Sources of Collinearity, John Wiley & Sons, New York, 1980, Chap. 3. How-
ever, this book is not for the beginner.

?’See David G. Kleinbaum, Lawrence L. Kupper, and Keith E. Muller, Applied Regression
Analysis and other Multivariate Methods, 2d ed., PWS-Kent, Boston, Mass., 1988, p. 210.
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other hand, the closer TOL; is to 1, the greater the evidence that X; is not
collinear with the other regressors.

VIF (or tolerance) as a measure of collinearity is not free of criticism. As
(10.5.4) shows, var (,é]‘) depends on three factors: o2, inz, and VIF;. A high
VIF can be counterbalanced by a low 2 or a high inz. To put it differently,
a high VIF is neither necessary nor sufficient to get high variances and high
standard errors. Therefore, high multicollinearity, as measured by a high
VIF, may not necessarily cause high standard errors. In all this discussion,
the terms high and low are used in a relative sense.

To conclude our discussion of detecting multicollinearity, we stress that
the various methods we have discussed are essentially in the nature of
“fishing expeditions,” for we cannot tell which of these methods will work in
any particular application. Alas, not much can be done about it, for multi-
collinearity is specific to a given sample over which the researcher may not
have much control, especially if the data are nonexperimental in nature—
the usual fate of researchers in the social sciences.

Again as a parody of multicollinearity, Goldberger cites numerous ways of
detecting micronumerosity, such as developing critical values of the sample
size, 1", such that micronumerosity is a problem only if the actual sample
size, i, is smaller than #". The point of Goldberger's parody is to emphasize
that small sample size and lack of variability in the explanatory variables may
cause problems that are at least as serious as those due to multicollinearity.

10.8 REMEDIAL MEASURES

Do Nothing

What can be done if multicollinearity is serious? We have two choices:
(1) do nothing or (2) follow some rules of thumb.

The “do nothing” school of thought is expressed by Blanchard as follows?®:

When students run their first ordinary least squares (OLS) regression, the first prob-
lem that they usually encounter is that of multicollinearity. Many of them conclude
that there is something wrong with OLS; some resort to new and often creative
techniques to get around the problem. But, we tell them, this is wrong. Multi-
collinearity is God’s will, not a problem with OLS or statistical technique in general.

What Blanchard is saying is that multicollinearity is essentially a data
deficiency problem (micronumerosity, again) and some times we have no
choice over the data we have available for empirical analysis.

Also, it is not that all the coelficients in a regression model are statisti-
cally insignificant. Moreover, even if we cannot estimate one or more re-
gression coefficients with greater precision, a linear combination of them
(i.e., estimable function) can be estimated relatively efficiently. As we saw in

ZBlanchard, O. J., Comment, Journal of Business and Economic Statistics, vol. 5, 1967,
pp. 449-451. The quote is reproduced from Peter Kennedy, A Guide to Econometrics, 4th ed.,
MIT Press, Cambridge, Mass., 1998, p. 190.
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(10.2.3), we can estimate « uniquely, even if we cannot estimate its two com-
ponents given there individually. Sometimes this is the best we can do with
a given set of data.?’

Rule-of-Thumb Procedures

One can try the following rules of thumb to address the problem of multi-
collinearity, the success depending on the severity of the collinearity
problem.

1. A priori information. Suppose we consider the model
Y = B1+ B2 Xoi + B3 Xz + 14

where Y = consumption, X5 = income, and X3 = wealth. As noted before,
income and wealth variables tend to be highly collinear. But suppose a pri-
ori we believe that 3 = 0.108,; that is, the rate of change of consumption
with respect to wealth is one-tenth the corresponding rate with respect to
income. We can then run the following regression:

Y =B1+ B Xoi +0.108: X3 + 144
=p1+5BXi +u

where X; = Xo; + 0.1X5;. Once we obtain B>, we can estimate Bz from the
postulated relationship between 8; and Bs.

How does one obtain a priori information? It could come from previous
empirical work in which the collinearity problem happens to be less serious
or from the relevant theory underlying the field of study. For example, in the
Cobb-Douglas-type production function (7.9.1), if one expects constant re-
turns to scale to prevail, then (8; + 83) = 1, in which case we could run the
regression (8.7.14), regressing the output-labor ratio on the capital-labor
ratio. If there is collinearity between labor and capital, as generally is the
case in most sample data, such a transformation may reduce or eliminate
the collinearity problem. But a warning is in order here regarding imposing
such a priori restrictions, “. . . since in general we will want to test economic
theory’s a priori predictions rather than simply impose them on data for
which they may not be true.”*® However, we know from Section 8.7 how to
test for the validity of such restrictions explicitly.

2. Combining cross-sectional and time series data. A variant of the
extraneous or a priori information technique is the combination of cross-
sectional and time-series data, known as pooling the data. Suppose we want

For an interesting discussion on this, see Conlisk, J., “When Collinearity is Desirable,”
Western Economic Journal, vol. 9, 1971, pp. 393-407.

30Mark B. Stewart and Kenneth F. Wallis, Introductory Econometrics, 2d ed., John Wiley &
Sons, A Halstead Press Book, New York, 1981, p. 154.
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to study the demand for automobiles in the United States and assume we
have time series data on the number of cars sold, average price of the car,
and consumer income. Suppose also that

InY; =g+ B InP 4 BsInl; 4+ 1y

where Y = number of cars sold, P = average price, I = income, and f = time.
Out objective is to estimate the price elasticity g, and income elasticity 8.

In time series data the price and income variables generally tend to be
highly collinear. Therefore, if we run the preceding regression, we shall be
faced with the usual multicollinearity problem. A way out of this has been
suggested by Tobin.?! He says that if we have cross-sectional data (for ex-
ample, data generated by consumer panels, or budget studies conducted by
various private and governmental agencies), we can obtain a fairly reliable
estimate of the income elasticity B3 because in such data, which are at a
point in time, the prices do not vary much. Let the cross-sectionally esti-
mated income elasticity be 3. Using this estimate, we may write the pre-
ceding time series regression as

Y =p1+BInP +u

where Y =1InY — $; In I, that is, Y~ represents that value of Y after remov-
ing from it the effect of income. We can now obtain an estimate of the price
elasticity 8, from the preceding regression.

Although it is an appealing technique, pooling the time series and cross-
sectional data in the manner just suggested may create problems of inter-
pretation, because we are assuming implicitly that the cross-sectionally es-
timated income elasticity is the same thing as that which would be obtained
from a pure time series analysis.*? Nonetheless, the technique has been used
in many applications and is worthy of consideration in situations where the
cross-sectional estimates do not vary substantially from one cross section to
another. An example of this technique is provided in exercise 10.26.

3. Dropping a variable(s) and specification bias. When faced with
severe multicollinearity, one of the “simplest” things to do is to drop one of
the collinear variables. Thus, in our consumption-income-wealth illustra-
tion, when we drop the wealth variable, we obtain regression (10.6.4), which
shows that, whereas in the original model the income variable was statisti-
cally insignificant, it is now “highly” significant.

But in dropping a variable from the model we may be committing a
specification bias or specification error. Specification bias arises from

317, Tobin, “A Statistical Demand Function for Food in the U.S.A.” Journal of the Royal
Statistical Society, Ser. A, 1950, pp. 113-141.

32For a thorough discussion and application of the pooling technique, see Edwin Kuh,
Capital Stock Growth: A Micro-Econometric Approach, North-Holland Publishing Company,
Amsterdam, 1963, Chaps. 5 and 6.
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incorrect specification of the model used in the analysis. Thus, if economic
theory says that income and wealth should both be included in the model
explaining the consumption expenditure, dropping the wealth variable
would constitute specification bias.

Although we will discuss the topic of specification bias in Chapter 13, we
caught a glimpse of it in Section 7.7. If, for example, the true model is

Y = B1+ B2 Xoi + B3 Xz + 14
but we mistakenly fit the model
Y =b1 +b12Xo: + 1 (10.8.1)
then it can be shown that (see Appendix 13A.1)

E(b12) = B2 + B3b3a (10.8.2)

where b3, = slope coefficient in the regression of X5 on X5. Therefore, it is
obvious from (10.8.2) that by, will be a biased estimate of 8, as long as b3,
is different from zero (it is assumed that Bs is different from zero; otherwise
there is no sense in including X; in the original model).** Of course, if b, is
zero, we have no multicollinearity problem to begin with. Tt is also clear
from (10.8.2) that if both b3, and B; are positive (or both are negative),
E(by,) will be greater than 8,; hence, on the average by, will overestimate 8,
leading to a positive bias. Similarly, if the product b3,8; is negative, on the
average by, will underestimate 8, leading to a negative bias.

From the preceding discussion it is clear that dropping a variable from
the model to alleviate the problem of multicollinearity may lead to the spec-
ification bias. Hence the remedy may be worse than the disease in some sit-
uations because, whereas multicollinearity may prevent precise estimation
of the parameters of the model, omitting a variable may seriously mislead
us as to the true values of the parameters. Recall that OLS estimators are
BLUE despite near collinearity.

4. Transformation of variables. Suppose we have time series data on
consumption expenditure, income, and wealth. One reason for high multi-
collinearity between income and wealth in such data is that over time both
the variables tend to move in the same direction. One way of minimizing
this dependence is to proceed as follows.

If the relation

Yi =61+ B2 Xor + B3 Xar + 14y (10.8.3)

33Note further that if b3, does not approach zero as the sample size is increased indefinitely,
then by, will be not only biased but also inconsistent.



Gujarati: Basic
Econometrics, Fourth
Edition

1. Relaxing the 10. Multicollinearity: What © The McGraw-Hill
Assumptions of the Happens if the Regressors
Classical Model are Correlated?

CHAPTER TEN: MULTICOLLINEARITY 367

holds at time ¢, it must also hold at time ¢ — 1 because the origin of time is
arbitrary anyway. Therefore, we have

Y=+ BXos—1+ B3 Xz -1 + 11 (10.8.4)
If we subtract (10.8.4) from (10.8.3), we obtain
Y — Y1 =X — Xo 1)+ Ba3(Xar — Xz 1-1) + V1 (10.8.5)

where v; = 1y — 1,_1. Equation (10.8.5) is known as the first difference
form because we run the regression, not on the original variables, but on
the differences of successive values of the variables.

The first difference regression model often reduces the severity of multi-
collinearity because, although the levels of X5 and X3 may be highly corre-
lated, there is no a priori reason to believe that their differences will also be
highly correlated.

As we shall see in the chapters on time series econometrics, an inci-
dental advantage of the first-difference transformation is that it may make a
nonstationary time series stationary. In those chapters we will see the im-
portance of stationary time series. As noted in Chapter 1, loosely speaking,
a time series, say, Y}, is stationary if its mean and variance do not change
systematically over time.

Another commonly used transformation in practice is the ratio trans-
formation. Consider the model:

Yi =61+ B2 Xor + B3 Xar + 14y (10.8.6)

where Y is consumption expenditure in real dollars, X5 is GDP, and X; is
total population. Since GDP and population grow over time, they are likely
to be correlated. One “solution” to this problem is to express the model on a
per capita basis, that is, by dividing (10.8.4) by X3, to obtain:

Y; 1 Xo
X3t =B ( ) + B ( ) + B3+ (X3z) (10.8.7)

Such a transformation may reduce collinearity in the original variables.
But the first-difference or ratio transformations are not without prob-
lems. For instance, the error term v; in (10.8.5) may not satisfy one of the
assumptions of the classical linear regression model, namely, that the dis-
turbances are serially uncorrelated. As we will see in Chapter 12, if the orig-
inal disturbance term u; is serially uncorrelated, the error term v, obtained
previously will in most cases be serially correlated. Therefore, the remedy
may be worse than the disease. Moreover, there is a loss of one observation
due to the differencing procedure, and therefore the degrees of freedom are
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reduced by one. In a small sample, this could be a factor one would wish at
least to take into consideration. Furthermore, the first-differencing proce-
dure may not be appropriate in cross-sectional data where there is no logi-
cal ordering of the observations.

Similarly, in the ratio model (10.8.7), the error term

(5)
X3
will be heteroscedastic, if the original error term u, is homoscedastic, as we
shall see in Chapter 11. Again, the remedy may be worse than the disease of
collinearity.
In short, one should be careful in using the first difference or ratio
method of transforming the data to resolve the problem of multicollinearity.
5. Additional or new data. Since multicollinearity is a sample feature,
it is possible that in another sample involving the same variables collinear-
ity may not be so serious as in the first sample. Sometimes simply increas-
ing the size of the sample (if possible) may attenuate the collinearity prob-
lem. For example, in the three-variable model we saw that

o2

var =

) x5 (1=135)

Now as the sample size increases, ) x2, will generally increase. (Why?)

Therefore, for any given r, 3, the variance of g, will decrease, thus decreas-

ing the standard error, which will enable us to estimate 8, more precisely.
As an illustration, consider the following regression of consumption ex-

penditure Y on income X, and wealth X3 based on 10 observations?*:

Y, =24.377 + 0.8716X5; — 0.0349X3;

10.8.8
t = (3.875) (2.7726) (—1.1595) R? =0.9682 ( )
The wealth coefficient in this regression not only has the wrong sign but is
also statistically insignificant at the 5 percent level. But when the sample
size was increased to 40 observations (micronumerosity?), the following
results were obtained:

Vi = 2.0907 + 0.7299X; + 0.0605X3;

10.8.9
t =(0.8713) (6.0014) (2.0014) R?=0.9672 ( )

Now the wealth coefficient not only has the correct sign but also is statisti-
cally significant at the 5 percent level.

34T am indebted to Albert Zucker for providing the results given in the following regressions.
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Obtaining additional or “better” data is not always that easy, for as Judge
et al. note:

Unfortunately, economists seldom can obtain additional data without bearing
large costs, much less choose the values of the explanatory variables they desire.
In addition, when adding new variables in situations that are not controlled, we
must be aware of adding observations that were generated by a process other
than that associated with the original data set; that is, we must be sure that the
economic structure associated with the new observations is the same as the
original structure.?>

6. Reducing collinearity in polynomial regressions. In Section 7.10
we discussed polynomial regression models. A special feature of these mod-
els is that the explanatory variable(s) appear with various powers. Thus, in
the total cubic cost function involving the regression of total cost on output,
(output)?, and (output)?, as in (7.10.4), the various output terms are going to
be correlated, making it difficult to estimate the various slope coefficients
precisely.®® In practice though, it has been found that if the explanatory vari-
able(s) are expressed in the deviation form (i.e., deviation from the mean
value), multicollinearity is substantially reduced. But even then the problem
may persist,?” in which case one may want to consider techniques such as
orthogonal polynomials.>®

7. Other methods of remedying multicollinearity. Multivariate sta-
tistical techniques such as factor analysis and principal components or
techniques such as ridge regression are often employed to “solve” the prob-
lem of multicollinearity. Unfortunately, these techniques are beyond the
scope of this book, for they cannot be discussed competently without re-
sorting to matrix algebra.?’

10.9 IS MULTICOLLINEARITY NECESSARILY BAD?
MAYBE NOT IF THE OBJECTIVE IS PREDICTION ONLY

It has been said that if the sole purpose of regression analysis is prediction
or forecasting, then multicollinearity is not a serious problem because the
higher the R?, the better the prediction.*® But this may be so “. .. as long as

35Judge et al., op. cit., p. 625. See also Sec. 10.9.

36As noted, since the relationship between X, X2, and X? is nonlinear, polynomial regressions
do not violate the assumption of no multicollinearity of the classical model, strictly speaking.

37See R. A. Bradley and S. S. Srivastava, “Correlation and Polynomial Regression,” American
Statistician, vol. 33, 1979, pp. 11-14.

38See Norman Draper and Harry Smith, Applied Regression Analysis, 2d ed., John Wiley &
Sons, New York, 1981, pp. 266-274.

3%A readable account of these techniques from an applied viewpoint can be found in
Samprit Chatterjee and Bertram Price, Regression Analysis by Example, John Wiley & Sons,
New York, 1977, Chaps. 7 and 8. See also H. D. Vinod, “A Survey of Ridge Regression and
Related Techniques for Improvements over Ordinary Least Squares,” Review of Economics and
Statistics, vol. 60, February 1978, pp. 121-131.

408ee R. C. Geary, “Some Results about Relations between Stochastic Variables: A Discus-
sion Document,” Review of International Statistical Institute, vol. 31, 1963, pp. 163-181.
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the values of the explanatory variables for which predictions are desired
obey the same near-exact linear dependencies as the original design [data]
matrix X.”*! Thus, if in an estimated regression it was found that X, = 2X;
approximately, then in a future sample used to forecast Y, X5 should also
be approximately equal to 2X3, a condition difficult to meet in practice
(see footnote 35), in which case prediction will become increasingly uncer-
tain.*> Moreover; if the objective of the analysis is not only prediction but
also reliable estimation of the parameters, serious multicollinearity will be
a problem because we have seen that it leads to large standard errors of the
estimators.

In one situation, however, multicollinearity may not pose a serious
problem. This is the case when R? is high and the regression coefficients
are individually significant as revealed by the higher ¢ values. Yet, multi-
collinearity diagnostics, say, the condition index, indicate that there is seri-
ous collinearity in the data. When can such a situation arise? As Johnston
notes:

This can arise if individual coefficients happen to be numerically well in excess of
the true value, so that the effect still shows up in spite of the inflated standard
error and/or because the true value itself is so large that even an estimate on the
downside still shows up as significant.*?

10.10 AN EXTENDED EXAMPLE: THE LONGLEY DATA

We conclude this chapter by analyzing the data collected by Longley.**
Although originally collected to assess the computational accuracy of
least-squares estimates in several computer programs, the Longley data
has become the workhorse to illustrate several econometric problems, in-
cluding multicollinearity. The data are reproduced in Table 10.7. The data
are time series for the years 1947-1962 and pertain to Y = number of peo-
ple employed, in thousands; X; = GNP implicit price deflator; X, = GNP,
millions of dollars; X3 = number of people unemployed in thousands, X, =
number of people in the armed forces, X5 = noninstitutionalized popula-
tion over 14 years of age; and Xs = year, equal to 1 in 1947, 2 in 1948, and
16 in 1962.

HJudge et al., op. cit., p. 619. You will also find on this page proof of why, despite collinear-
ity, one can obtain better mean predictions if the existing collinearity structure also continues
in the future samples.

42For an excellent discussion, see E. Malinvaud, Statistical Methods of Econometrics, 2d ed.,
North-Holland Publishing Company, Amsterdam, 1970, pp. 220-221.

437, Johnston, Econometric Methods, 3d ed., McGraw-Hill, New York, 1984, p. 249,

“Longley, J. “An Appraisal of Least-Squares Programs from the Point of the User,” Journal
of the American Statistical Association, vol. 62, 1967, pp. 819-841.
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LONGLEY DATA
Observation y Xi X5 Xa Xa Xs Time
1947 60,323 830 234,289 2356 1590 107,608 1
1948 61,122 885 259,426 2325 1456 108,632 2
1949 60,171 882 258,054 3682 1616 109,773 3
1950 61,187 895 284,599 3351 1650 110,929 4
1951 63,221 962 328,975 2099 3099 112,075 5
1952 63,639 981 346,999 1932 3594 113,270 6
1953 64,989 990 365,385 1870 3547 115,094 7
1954 63,761 1000 363,112 3578 3350 116,219 8
1955 66,019 1012 397,469 2904 3048 117,388 9
1956 67,857 1046 419,180 2822 2857 118,734 10
1957 68,169 1084 442,769 2936 2798 120,445 11
1958 66,513 1108 444,546 4681 2637 121,950 12
1959 68,655 1126 482,704 3813 2552 123,366 13
1960 69,564 1142 502,601 3931 2514 125,368 14
1961 69,331 1157 518,173 4806 2572 127,852 15
1962 70,551 1169 554,894 4007 2827 130,081 16

Source: See footnote 44.

Assume that our objective is to predict Y on the basis of the six X vari-
ables. Using Eviews3, we obtain the following regression results:

Dependent Variable: Y
Sample: 1947-1962

Variable Coefficient std. Brror t-Statistic Prob.
C -3482259. 390420.4 -3.910803 0.0036
X1 15.06187 34.91493 0.177376 0.8631
X -0.035819 0.033491 -1.069516 0.3127
X3 -2.020230 0.488400 -4.136427 0.0025
Xy -1.033227 0.214274 -4.821985 0.0009
Xs -0.051104 0.226073 -0.226051 0.8262
Xeg 1829.151 455.4785 4.015890 0.0030
R-squared 0.995479 Mean dependent var 65317.00
Adjusted R-squared 0.992465 S.D. dependent var 3511.968
S.E. of regression 304.8541 Akaike info criterion 14.57718
Sum sqguared resid 836424 .1 Schwarz criterion 14.91519
Log likelihood -109.6174 F-statistic 330.2853
Durbin-Watson stat 2.559488 Prob(F-gstatistic) 0.000000

A glance at these results would suggest that we have the collinearity prob-
lem, for the R? value is very high, but quite a few variables are statistically
insignificant (X, X5, and X5s), a classic symptom of multicollinearity. To shed
more light on this, we show in Table 10.8 the intercorrelations among the
Six regressors.
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TABLE 10.8

TABLE 10.9

INTERCORRELATIONS
X4 Xo X3 Xa Xs X

X4 1.000000 0.991589 0.620633 0.464744 0.979163 0.991149
Xo 0.991589 1.000000 0.604261 0.446437 0.991090 0.995273
Xa 0.620633 0.604261 1.000000 —0.177421 0.686552 0.668257
X4 0.464744 0.446437 —0.177421 1.000000 0.364416 0.417245
Xs 0.979163 0.991090 0.686552 0.364416 1.000000 0.993953
Xs 0.991149 0.995273 0.668257 0.417245 0.993953 1.000000

This table gives what is called the correlation matrix. In this table the
entries on the main diagonal (those running from the upper left-hand cor-
ner to the lower right-hand corner) give the correlation of one variable with
itself, which is always 1 by definition, and the entries off the main diagonal
are the pair-wise correlations among the X variables. If you take the first row
of this table, this gives the correlation of X; with the other X variables. For
example, 0.991589 is the correlation between X; and X5, 0.620633 is the cor-
relation between X; and X3, and so on.

As you can see, several of these pair-wise correlations are quite high, sug-
gesting that there may be a severe collinearity problem. Of course, remem-
ber the warning given earlier that such pair-wise correlations may be a suf-
ficient but not a necessary condition for the existence of multicollinearity.

To shed further light on the nature of the multicollinearity problem, let us
run the auxiliary regressions, that is the regression of each X variable on the
remaining X variables. To save space, we will present only the R? values
obtained from these regressions, which are given in Table 10.9. Since the R?
values in the auxiliary regressions are very high (with the possible excep-
tion of the regression of X3) on the remaining X variables, it seems that we
do have a serious collinearity problem. The same information is obtained
from the tolerance factors. As noted previously, the closer the tolerance fac-
tor is to zero, the greater is the evidence of collinearity.

Applying Klein’s rule of thumb, we see that the R? values obtained from
the auxiliary regressions exceed the overall R? value (that is the one ob-
tained from the regression of ¥ on all the X variables) of 0.9954 in 3 out of

R2 VALUES FROM THE AUXILIARY REGRESSIONS

Dependent variable ~ R2value  Tolerance (TOL) =1 — R?

Xi 0.9926 0.0074
Xo 0.9994 0.0006
Xa 0.9702 0.0298
Xa 0.7213 0.2787
Xs 0.9970 0.0030

X 0.9986 0.0014
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6 auxiliary regressions, again suggesting that indeed the Longley data are
plagued by the multicollinearity problem. Incidentally, applying the F test
given in (10.7.3) the reader should verify that the R? values given in the pre-
ceding tables are all statistically significantly different from zero.

We noted earlier that the OLS estimators and their standard errors are
sensitive to small changes in the data. In exercise 10.32 the reader is asked
to rerun the regression of Y on all the six X variables but drop the last data
observations, that is, run the regression for the period 1947-1961. You
will see how the regression results change by dropping just a single year’s
observations.

Now that we have established that we have the multicollinearity problem,
what “remedial” actions can we take? Let us reconsider our original model.
First of all, we could express GNP not in nominal terms, but in real terms,
which we can do by dividing nominal GNP by the implicit price deflator.
Second, since noninstitutional population over 14 years of age grows over
time because of natural population growth, it will be highly correlated with
time, the variable Xz in our model. Therefore, instead of keeping both these
variables, we will keep the variable X5 and drop Xs. Third, there is no com-
pelling reason to include Xz, the number of people unemployed; perhaps the
unemployment rate would have been a better measure of labor market con-
ditions. But we have no data on the latter. So, we will drop the variable X;.
Making these changes, we obtain the following regression results (RGNP =
real GNP)*>:

Dependent Variable: Y
Sample: 1947-1962

Variable Coefficient std. Brror t-Statistic Prob.
C 65720.37 10624.81 6.185558 0.0000
RGNP 9.736496 1.791552 5.434671 0.0002
Xy -0.687966 0.322238 -2.134965 0.0541

Xy -0.299537 0.141761 -2.112965 0.0562
R-squared 0.981404 Mean dependent var 65317.00
Adjusted R-squared 0.976755 S.D. dependent var 3511.968
S.E. of regression 535.4492 Akaike info criterion 15.61641
Sum sqguared resid 3440470. Schwarz criterion 15.80955
Log likelihood -120.9313 F-statistic 211.0972
Durbin-Watson stat 1.654069 Prob(F-statistic) 0.000000

Although the R? value has declined slightly compared with the original R?,
it is still very high. Now all the estimated coefficients are significant and the
signs of the coefficients make economic sense.

“The coefficient of correlation between X5 and X is about 0.9939, a very high correlation
indeed.
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We leave it for the reader to devise alternative models and see how the re-
sults change. Also keep in mind the warning sounded earlier about using the
ratio method of transforming the data to alleviate the problem of collinear-
ity. We will revisit this question in Chapter 11.

10.11  SUMMARY AND CONCLUSIONS

1. One of the assumptions of the classical linear regression model is
that there is no multicollinearity among the explanatory variables, the Xs.
Broadly interpreted, multicollinearity refers to the situation where there
is either an exact or approximately exact linear relationship among the X
variables.

2. The consequences of multicollinearity are as follows: If there is per-
fect collinearity among the X’s, their regression coefficients are indetermi-
nate and their standard errors are not defined. If collinearity is high but not
perfect, estimation of regression coefficients is possible but their standard
errors tend to be large. As a result, the population values of the coefficients
cannot be estimated precisely. However, if the objective is to estimate linear
combinations of these coefficients, the estimable functions, this can be done
even in the presence of perfect multicollinearity.

3. Although there are no sure methods of detecting collinearity, there
are several indicators of it, which are as follows:

(a) The clearest sign of multicollinearity is when R? is very high but
none of the regression coefficients is statistically significant on the
basis of the conventional 7 test. This case is, of course, extreme.

(b) In models involving just two explanatory variables, a fairly good
idea of collinearity can be obtained by examining the zero-order,
or simple, correlation coefficient between the two variables. It
this correlation is high, multicollinearity is generally the culprit.

(¢) However, the zero-order correlation coefficients can be mislead-
ing in models involving more than two X variables since it is pos-
sible to have low zero-order correlations and yet find high multi-
collinearity. In situations like these, one may need to examine the
partial correlation coefficients.

(d) If R? is high but the partial correlations are low, multicollinearity
is a possibility. Here one or more variables may be superfluous.
But if R? is high and the partial correlations are also high, multi-
collinearity may not be readily detectable. Also, as pointed out by
C. Robert, Krishna Kumar, John O’'Hagan, and Brendan McCabe,
there are some statistical problems with the partial correlation
test suggested by Farrar and Glauber.

(e) Therefore, one may regress each of the X; variables on the re-
maining X variables in the model and find out the corresponding
coefficients of determination R?. A high R? would suggest that X;
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is highly correlated with the rest of the X’s. Thus, one may drop
that X; from the model, provided it does not lead to serious speci-
fication bias.

4. Detection of multicollinearity is half the battle. The other half is con-
cerned with how to get rid of the problem. Again there are no sure methods,
only a few rules of thumb. Some of these rules are as follows: (1) using ex-
traneous or prior information, (2) combining cross-sectional and time
series data, (3) omitting a highly collinear variable, (4) transforming data,
and (5) obtaining additional or new data. Of course, which of these rules
will work in practice will depend on the nature of the data and severity of
the collinearity problem.

5. We noted the role of multicollinearity in prediction and pointed out
that unless the collinearity structure continues in the future sample it is
hazardous to use the estimated regression that has been plagued by multi-
collinearity for the purpose of forecasting.

6. Although multicollinearity has received extensive (some would say
excessive) attention in the literature, an equally important problem encoun-
tered in empirical research is that of micronumerosity, smallness of sample
size. According to Goldberger, “When a research article complains about
multicollinearity, readers ought to see whether the complaints would be
convincing if “micronumerosity” were substituted for “multicollinearity.”*¢
He suggests that the reader ought to decide how small #, the number of ob-
servations, is before deciding that one has a small-sample problem, just as
one decides how high an R? value is in an auxiliary regression before declar-
ing that the collinearity problem is very severe.

10.1. In the k-variable linear regression model there are k normal equations
to estimate the & unknowns. These normal equations are given in
Appendix C. Assume that X; is a perfect linear combination of the
remaining X variables. How would you show that in this case it is im-
possible to estimate the k regression coefficients?

10.2. Consider the set of hypothetical data in Table 10.10. Suppose you want
to fit the model

Y, = 81+ B Xoi + B3 X3 + 1y

to the data.

a. Can you estimate the three unknowns? Why or why not?

b. If not, what linear functions of these parameters, the estimable func-
tions, can you estimate? Show the necessary calculations.

4Goldberger, op. cit., p. 250.
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TABLE 10.10 v X X
~10 1 1
-8 2 3
-6 3 5
—4 4 7
_2 5 9
0 6 11
2 7 13
4 8 15
6 9 17
8 10 19
10 11 21
10.3. Refer to the child mortality example discussed in Chapter 8. The exam-
ple there involved the regression of child mortality (CM) rate on per
capita GNP (PGNP) and female literacy rate (FLR). Now suppose we add
the variable, total fertility rate (TFR). This gives the following regression
results.
Dependent Variable: CM
Variable Coefficient std. Error t-sStatistic Prob.
c 168.3067 32.89165 5.117003 0.0000
PGNP ~0.005511 0.001878 ~2.934275 0.0047
FLR -1.768029 0.248017 ~7.128663 0.0000
TFR 12.86864 4.190533 3.070883 0.0032
R-squared 0.747372 Mean dependent var 141.5000
Adjusted R-squared 0.734740 5.D. dependent var 75.97807
S.E. of regression 39.13127 Akaike info criterion 10.23218
Sum sqguared resid 91875.38 Schwarz criterion 10.36711
Log likelihood -323.4298 F-statistic 59.16767
Durbin-Watson stat 2.170318 Prob(F-gstatistic) 0.000000
a. Compare these regression results with those given in Eq. (8.2.1).
What changes do you see? And how do you account for them?
b. Is it worth adding the variable TFR to the model? Why?
c. Since all the individual r coefficients are statistically significant, can
we say that we do not have a collinearity problem in the present case?
10.4. If the relation A1 Xy; + 22X + 23X35; = 0 holds true for all values of A4, 15,
and 13, estimate r123,7132, and r231. Also find R} ,,, R3 |5, and R ;.
What is the degree of multicollinearity in this situation? Note: R} , , is the
coefficient of determination in the regression of Y on X, and X5. Other R?
values are to be interpreted similarly.
10.5. Consider the following model:

Y =81+ BX: +B3Xe1 + BaXe o + Bs Xy 3+ B Xy_a + 14y

where Y = consumption, X = income, and ¢ = time. The preceding model
postulates that consumption expenditure at time ¢ is a function not only
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of income at time ¢ but also of income through previous periods. Thus,
consumption expenditure in the first quarter of 2000 is a function of in-
come in that quarter and the four quarters of 1999. Such models are
called distributed lag models, and we shall discuss them in a later
chapter.

a. Would you expect multicollinearity in such models and why?

b. If collinearity is expected, how would you resolve the problem?
Consider the illustrative example of Section 10.6. How would you recon-
cile the difference in the marginal propensity to consume obtained from
(10.6.1) and (10.6.4)?

In data involving economic time series such as GNP, money supply,
prices, income, unemployment, etc., multicollinearity is usually sus-
pected. Why?

Suppose in the model

Y, =81+ B X0 + B3 Xz + 14

that r; 3, the coefficient of correlation between X, and X3, is zero. There-
fore, someone suggests that you run the following regressions:

Y = oy + o X 4 uy;
Y, =1+ vaXa +uy

a. Will &2 = ,éz and )93 = ,é3’) Why’)

b. Will 8, equal &, or $ or some combination thereof?

c. Will var (8,) = var (&,) and var (8;) = var (7;3)?

Refer to the illustrative example of Chapter 7 where we fitted the

Cobb-Douglas production function to the Taiwanese agricultural sector.

The results of the regression given in (7.9.4) show that both the labor

and capital coefficients are individually statistically significant.

a. Find out whether the variables labor and capital are highly correlated.

b. If your answer to (a) is affirmative, would you drop, say, the labor
variable from the model and regress the output variable on capital
input only?

c. If you do so, what kind of specification bias is committed? Find out
the nature of this bias.

Refer to Example 7.4. For this problem the correlation matrix is as

follows:

X, X X
X 1 0.9742 0.9284
X? 1.0 0.9872
X3 1.0

a. “Since the zero-order correlations are very high, there must be seri-
ous multicollinearity.” Comment.

b. Would you drop variables X? and X} from the model?

c. If youdrop them, what will happen to the value of the coefficient of X;?
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10.11.

10.12.

10.13.

10.14.

""10.15.

Stepwise regression. In deciding on the “best” set of explanatory vari-
ables for a regression model, researchers often follow the method of
stepwise regression. In this method one proceeds either by introducing
the X variables one at a time (stepwise forward regression) or by
including all the possible X variables in one multiple regression and
rejecting them one at a time (stepwise backward regression). The de-
cision to add or drop a variable is usually made on the basis of the
contribution of that variable to the ESS, as judged by the £ test. Know-
ing what you do now about multicollinearity, would you recommend
either procedure? Why or why not?"

State with reason whether the following statements are true, false, or

uncertain:

a. Despite perfect multicollinearity, OLS estimators are BLUE.

b. In cases of high multicollinearity, it is not possible to assess the indi-
vidual significance of one or more partial regression coefficients.

c. If an auxiliary regression shows that a particular R? is high, there is
definite evidence of high collinearity.

d. High pair-wise correlations do not suggest that there is high multi-
collinearity.

e. Multicollinearity is harmless if the objective of the analysis is predic-
tion only.

f. Ceteris paribus, the higher the VIF is, the larger the variances of OLS
estimators.

g. The tolerance (TOL) is a better measure of multicollinearity than the
VIF.

h. You will not obtain a high R? value in a multiple regression if all the
partial slope coefficients are individually statistically insignificant on
the basis of the usual ¢ test.

i. In the regression of Y on X, and Xj, suppose there is little variability
in the values of X3. This would increase var (83). In the extreme, if all
X5 are identical, var (8;) is infinite.

a. Show thatifr;;=0fori=2,3,..., kthen

Riz3. =0

b. What is the importance of this finding for the regression of variable
X](:Y) on Xz, X3, e ,Xk?

Suppose all the zero-order correlation coefficients of X1(=Y), X5, ..., X}
are equal to#
a. What is the value of R? ?

123, k°
b. What are the values of the first-order correlation coefficients?

In matrix notation it can be shown (see Appendix C) that
B=XX)"Xy

a. What happens toﬁ when there is perfect collinearity among the X's?
b. How would you know if perfect collinearity exists?

*See if your reasoning agrees with that of Arthur S. Goldberg and D. B. Jochems, “Note on
Stepwise Least-Squares,” Journal of the American Statistical Association, vol. 56, March 1961,

pp. 105-

110.

“*Optional.
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Using matrix notation, it can be shown
var—cov () = ¢2(X’X)™!

What happens to this var—cov matrix:

a. When there is perfect multicollinearity?
b. When collinearity is high but not perfect?
Consider the following correlation matrix;

X, X3 - X
Xz[ 1 rs - Vzk—l
R:X3Ii’32 1 i’3kl
Xk erz i3 1 J

How would you find out from the correlation matrix whether (a) there is
perfect collinearity, () there is less than perfect collinearity, and (¢) the
X's are uncorrelated.

Hint: You may use |R| to answer these questions, where |R| denotes
the determinant of R.
Orthogonal explanatory variables. Suppose in the model

Y =81+ B X0 + B3 Xsi + - + B Xii + 14

X, to X; are all uncorrelated. Such variables are called orthogonal vari-

ables. If this is the case:

. What will be the structure of the (X’X) matrix?

. How would you obtain f§ = (X'X)'X'y?

. What will be the nature of the var—cov matrix of §?

. Suppose you have run the regression and afterward you want to
introduce another orthogonal variable, say, Xi,; into the model. Do
you have to recompute all the previous coefficients 4, to g.? Why or
why not?

Consider the following model:

e oe

GNP; = 1 + oM, + B3 M, 1 + Ba(M; — M) + 14,

where GNP; = GNP at time ¢, M, = money supply at time ¢, M,_; =
money supply at time (¢t — 1), and (M; — M,_;) = change in the money
supply between time ¢ and time (f — 1). This model thus postulates that
the level of GNP at time ¢ is a function of the money supply at time ¢ and
time (¢ — 1) as well as the change in the money supply between these
time periods.

a. Assuming you have the data to estimate the preceding model, would
you succeed in estimating all the coefficients of this model? Why or
why not?

b. If not, what coefficients can be estimated?

*Optional.
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10.20.

10.21.

10.22.

10.23.

10.24.

c. Suppose that the 83M, ; term were absent from the model. Would
your answer to (a) be the same?
d. Repeat (¢), assuming that the term g, M, were absent from the model.

Show that (7.4.7) and (7.4.8) can also be expressed as
By = (X pixai) (X x3;) = (X wisi) (X xaixsi)
(Cx3) (X x3) (1 =71,)
ﬁ3 _ (Z yixSi) (Z xi) - (Z yixZi) (Z xZixSi)

5> le)(zxsl)(l - ”23)

where r, 3 1s the coefficient of correlation between X, and X5.

Using (7.4.12) and (7.4. 15) show that when there is perfect collinearity,
the variances of 8, and g; are infinite.

Verify that the standard errors of the sums of the slope coefficients esti-
mated from (10.5.6) and (10.5.7) are, respectively, 0.1549 and 0.1825.
(See Section 10.5.)

For the k-variable regression model, it can be shown that the variance of
the kth (k =2, 3, ..., K) partial regression coefficient given in (7.5.6) can

also be expressed as
R 1 o} (1 - RZ)
var = —=
(Pi) n—ko? \1-R?

where Uyz = variance of Y, o = variance of the kth explanatory variable,

R? = R* from the regression of X; on the remaining X variables, and

R? = coefficient of determination from the multiple regression, that is,

regression of Y on all the X variables.

a. Other things the same, if o increases, what happens to var (Bu)?
What are the implications for the multicollinearity problem?

b. What happens to the preceding formula when collinearity is perfect?

c. True or false: “The variance of 8, decreases as R? rises, so that the ef-
fect of a high R? can be offset by a high R?.”

From the annual data for the U.S. manufacturing sector for 1899-1922,

Dougherty obtained the following regression results':

og Y= 2.81 — 0.53log K+ 0.91log L+ 0.047¢
se=(1.38) (0.34) (0.14) (0.021) (1)
R2—097 F=—189.8

where Y = index of real output, K = index of real capital input, L = index
of real labor input, t = time or trend.

*This formula is given by R. Stone, “The Analysis of Market Demand,” Journal of the Royal
Statistical Society, vol. B7, 1945, p. 297. Also recall (7.5.6). For further discussion, see Peter
Kennedy, A Guide to Econometrics, 2d ed., The MIT Press, Cambridge, Mass., 1985, p. 156.

fChristopher Dougherty, Introduction to Econometrics, Oxford University Press, New York,
1992, pp. 159-160.
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Using the same data, he also obtained the following regression:

fog (Y/L) = —0.11 + 0.11 log (K/L) + 0.006t
se= (0.03) (0.15) (0.006) 2)
R2=065 F=195

. Is there multicollinearity in regression (1)? How do you know?
. In regression (1), what is the a priori sign of log K? Do the results con-

form to this expectation? Why or why not?

. How would you justify the functional form of regression (1)? (Hint:

Cobb-Douglas production function.)

. Interpret regression (1). What is the role of the trend variable in this

regression?

. What is the logic behind estimating regression (2)?
. If there was multicollinearity in regression (1), has that been reduced

by regression (2)? How do you know?

. If regression (2) is a restricted version of regression (1), what restric-

tion is imposed by the author? (Hint: returns to scale.) How do you
know if this restriction is valid? Which test do you use? Show all your
calculations.

. Are the R? values of the two regressions comparable? Why or why

not? How would you make them comparable, if they are not compa-
rable in the present form?

Critically evaluate the following statements:

a.

b.

“In fact, multicollinearity is not a modeling error. It is a condition of
deficient data.””

“If it is not feasible to obtain more data, then one must accept the fact
that the data one has contain a limited amount of information and
must simplify the model accordingly. Trying to estimate models that
are too complicated is one of the most common mistakes among in-
experienced applied econometricians.”?

. “It is common for researchers to claim that multicollinearity is at

work whenever their hypothesized signs are not found in the regres-
sion results, when variables that they know a priori to be important
have insignificant ¢ values, or when various regression results are
changed substantively whenever an explanatory variable is deleted.
Unfortunately, none of these conditions is either necessary or suffi-
cient for the existence of collinearity, and furthermore none provides
any useful suggestions as to what kind of extra information might be
required to solve the estimation problem they present.”*

“Samprit Chatterjee, Ali S. Hadi, and Betram Price, Regression Analysis by Example, 3d ed.,
John Wiley & Sons, New York, 2000, p. 226.

"Russel Davidson and James G. MacKinnon, Estimation and Inference in Econometrics,
Oxford University Press, New York, 1993, p. 186.

*Peter Kennedy, A Guide to Economeirics, 4th ed., MIT Press, Cambridge, Mass., 1998,

p. 187.
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Problems

TABLE 10.11

d. “...any time series regression containing more than four indepen-
dent variables results in garbage.””

10.26. Klein and Goldberger attempted to fit the following regression model to
the U.S. economy:
Y, = B1+ B2 Xo + B3 X3 + By Xy + 14
where Y = consumption, X, = wage income, X3 = nonwage, nonfarm
income, and X4 = farm income. But since X5, X3, and X, are expected to
be highly collinear, they obtained estimates of g3 and B: from cross-
sectional analysis as follows: 83 = 0.758; and B4 = 0.6258,. Using these
estimates, they reformulated their consumption function as follows:
Yi =81+ Bo(Xo +0.75X3 + 0.625Xy;) +uy = 1+ o Zi +uy
where Z; = X5; + 0.75X3; + 0.625Xy;.
a. Fit the modified model to the data in Table 10.11 and obtain esti-
mates of B, to .
b. How would you interpret the variable Z?

10.27. Table 10.12 gives data on imports, GDP, and the Consumer Price Index
(CPI) for the United States over the period 1970-1998. You are asked to
consider the following model:

In Imports, = 81 + B2 In GDP, + B85 In CPI, + u,
a. Estimate the parameters of this model using the data given in the
table.
b. Do you suspect that there is multicollinearity in the data?
ear Y X2 X3 X4 Year Y X2 X3 X4

1936 62.8 43.41 17.10 3.96 1946 95.7 76.73 28.26 9.76

1937 65.0 46.44 18.65 5.48 1947 98.3 75.91 27.91 9.31

1938 63.9 44.35 17.09 4.37 1948 100.3 77.62 32.30 9.85

1939 67.5 47.82 19.28 4.51 1949 103.2 78.01 31.39 7.21

1940 71.3 51.02 23.24 4.88 1950 108.9 83.57 35.61 7.39

1941 76.6 58.71 28.11 6.37 1951 108.5 90.59 37.58 7.98

1945* 86.3 87.69 30.29 8.96 1952 111.4 95.47 35.17 7.42

*The data for the war years 1942—1944 are missing. The data for other years are billions of 1939 dollars.
Source: L. R. Klein and A. S. Goldberger, An Economic Model of the United States, 1929-1952, North
Holland Publishing Company, Amsterdam, 1964, p. 131.

“This quote attributed to the late econometrician Zvi Griliches, is obtained from Ernst R.
Berndt, The Practice of Econometrics: Classic and Contemporary, Addison Wesley, Reading,
Mass., 1991, p. 224.
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TABLE 10.12 U.S. IMPORTS, GDP, AND CPI, 1970-1998

Observation CPI GDP Imports Observation CPI GDP Imports
1970 38.8 1039.7 39,866 1985 107.6 4213.0 338,088
1971 40.5 1128.6 45,579 1986 109.6 4452.9 368,425
1972 41.8 1240.4 55,797 1987 113.6 4742.5 409,765
1973 44 .4 1385.5 70,499 1988 118.3 5108.3 447,189
1974 49.3 1501.0 103,811 1989 124.0 5489.1 477,365
1975 53.8 1635.2 98,185 1990 130.7 5803.2 498,337
1976 56.9 1823.9 124,228 1991 136.2 5986.2 490,981
1977 60.6 2031.4 151,907 1992 140.3 6318.9 536,458
1978 65.2 2295.9 176,002 1993 144.5 6642.3 589,441
1979 72.6 2566.4 212,007 1994 148.2 7054.3 668,590
1980 82.4 2795.0 249,750 1995 152.4 7400.5 749,574
1981 90.9 3131.3 265,067 1996 156.9 7813.2 803,327
1982 96.5 3259.2 247,642 1997 160.5 8300.8 876,366
1983 99.6 3534.9 268,901 1998 163.0 8759.9 917,178
1984 103.9 3932.7 332,418

10.28.

10.29.

c. Regress: (1) In Imports; = Ay + 4, In GDP;
(2) In Imports; = By + B, In CPI,
(3) In GDP; = C; + C, In CPI,
On the basis of these regressions, what can you say about the na-
ture of multicollinearity in the data?

d. Suppose there is multicollinearity in the data but g, and g; are indivi-
dually significant at the 5 percent level and the overall F test is also sig-
nificant. In this case should we worry about the collinearity problem?

Refer to Exercise 7.19 about the demand function for chicken in the

United States.

a. Using the log-linear, or double-log, model, estimate the various auxil-
iary regressions. How many are there?

b. From these auxiliary regressions, how do you decide which of the re-
gressor(s) are highly collinear? Which test do you use? Show the de-
tails of your calculations.

c. If there is significant collinearity in the data, which variable(s) would
you drop to reduce the severity of the collinearity problem? If you do
that, what econometric problems do you face?

d. Do you have any suggestions, other than dropping variables, to ame-
liorate the collinearity problem? Explain.

Table 10.13 gives data on new passenger cars sold in the United States as

a function of several variables.

a. Develop a suitable linear or log-linear model to estimate a demand
function for automobiles in the United States.

b. If you decide to include all the regressors given in the table as ex-
planatory variables, do you expect to face the multicollinearity prob-
lem? Why?

c¢. If you do, how would you go about resolving the problem? State your
assumptions clearly and show all the calculations explicitly.
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TABLE 10.13

Year Y X2 X3 X4 X5 X6

1971 10,227 112.0 121.3 776.8 4.89 79,367
1972 10,872 111.0 125.3 839.6 455 82,153
1973 11,350 111.1 133.1 949.8 7.38 85,064
1974 8,775 117.5 147.7 1,038.4 8.61 86,794
1975 8,539 127.6 161.2 1,142.8 6.16 85,846
1976 9,994 135.7 170.5 1,252.6 522 88,752
1977 11,046 142.9 181.5 1,379.3 5.50 92,017
1978 11,164 153.8 195.3 1,551.2 7.78 96,048
1979 10,559 166.0 217.7 1,729.3 10.25 98,824
1980 8,979 179.3 247.0 1,918.0 11.28 99,303
1981 8,535 190.2 272.3 2,127.6 13.73 100,397
1982 7,980 197.6 286.6 2,261.4 11.20 99,526
1983 9,179 202.6 297.4 2,428.1 8.69 100,834
1984 10,394 208.5 307.6 2,670.6 9.65 105,005
1985 11,039 215.2 318.5 2,841.1 7.75 107,150
1986 11,450 224.4 323.4 3,022.1 6.31 109,597

Y = new passenger cars sold (thousands), seasonally unadjusted

Xz = new cars, Consumer Price Index, 1967 = 100, seasonally unadjusted

X3z = Consumer Price Index, all items, all urban consumers, 1967 = 100, seasonally unadjusted

X4 = the personal disposable income (PDI), billions of dollars, unadjusted for seasonal variation

Xs = the interest rate, percent, finance company paper placed directly

Xs = the employed civilian labor force (thousands), unadjusted for seasonal variation

Source: Business Statistics, 1986, A Supplement to the Current Survey of Business, U.S. Department of
Commerce.

10.30.

10.31.

To assess the feasibility of a guaranteed annual wage (negative income
tax), the Rand Corporation conducted a study to assess the response of
labor supply (average hours of work) to increasing hourly wages.” The
data for this study were drawn from a national sample of 6000 house-
holds with a male head earnings less than $15,000 annually. The data
were divided into 39 demographic groups for analysis. These data are
given in Table 10.14. Because data for four demographic groups were
missing for some variables, the data given in the table refer to only 35 de-
mographic groups. The definitions of the various variables used in the
analysis are given at the end of the table.
a. Regress average hours worked during the year on the variables given
in the table and interpret your regression.
Is there evidence of multicollinearity in the data? How do you know?
Compute the variance inflation factors (VIF) and TOL measures for
the various regressors.
d. If there is the multicollinearity problem, what remedial action, if any,
would you take?
e. What does this study tell about the feasibility of a negative income tax?
Table 10.15 gives data on the crime rate in 47 states in the United States
for 1960. Try to develop a suitable model to explain the crime rate in
relation to the 14 socioeconomic variables given in the table. Pay partic-
ular attention to the collinearity problem in developing your model.

b

C

“D. H. Greenberg and M. Kosters, Income Guarantees and the Working Poor, Rand Corpora-
tion, R-579-OEQ, December 1970.
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HOURS OF WORK AND OTHER DATA FOR 35 GROUPS

Observation Hours  Rate ERSP ERNO NEIN Assets Age DEP  School

1 2157 2.905 1121 291 380 7250 385 2.340 10.5

2 2174 2.970 1128 301 398 7744  39.3 2.335 10.5

3 2062 2.350 1214 326 185 3068 40.1 2.851 8.9

4 2111 2.511 1203 49 117 1632 224 1.159 11.5

5 2134 2.791 1013 594 730 12710 57.7 1.229 8.8

6 2185 3.040 1135 287 382 7706 38.6 2.602 10.7

7 2210 3.222 1100 295 474 9338 39.0 2.187 1.2

8 2105 2.493 1180 310 255 4730 39.9 2616 9.3

9 2267 2.838 1298 252 431 8317 38.9 2.024 11.1
10 2205 2.356 885 264 373 6789 38.8 2.662 9.5
11 2121 2.922 1251 328 312 5907 39.8 2.287 10.3
12 2109 2.499 1207 347 271 5069 39.7 3.193 8.9
13 2108 2.796 1036 300 259 4614  38.2 2.040 9.2
14 2047 2.453 1213 297 139 1987 40.3 2.545 9.1
15 2174 3.582 1141 414 498 10239 40.0 2.064 11.7
16 2067 2.909 1805 290 239 4439 39.1  2.301 10.5
17 2159 2.511 1075 289 308 5621 39.3 2.486 9.5
18 2257 2.516 1093 176 392 7293 37.9 2.042 10.1
19 1985 1.423 553 381 146 1866 40.6 3.833 6.6
20 2184 3.636 1091 291 560 11240 39.1 2.328 11.6
21 2084 2.983 1327 331 296 5653 39.8 2.208 10.2
22 2051 2.573 1194 279 172 2806 40.0 2.362 9.1
23 2127 3.262 1226 314 408 8042 39.5 2.259 10.8
24 2102 3.234 1188 414 352 7557 39.8 2.019 10.7
25 2098 2.280 973 364 272 4400 40.6 2.661 8.4
26 2042 2.304 1085 328 140 1739  41.8 2444 8.2
27 2181 2.912 1072 304 383 7340 39.0 2.337 10.2
28 2186 3.015 1122 30 352 7292 37.2 2.046 10.9
29 2188 3.010 990 366 374 7325 38.4 2.847 10.6
30 2077 1.901 350 209 95 1370 37.4 4.158 8.2
31 2196 3.009 947 294 342 6888 37.5 3.047 10.6
32 2093 1.899 342 311 120 1425 37.5 4.512 8.1
33 2173 2.959 1116 296 387 7625 39.2 2.342 10.5
34 2179 2.971 1128 312 397 7779 39.4 2.341 10.5
35 2200 2.980 1126 204 393 7885 39.2 2.341 10.6

Notes: Hours = average hours worked during the year
Rate = average hourly wage (dollars)
ERSP = average yearly earnings of spouse (dollars)
ERNO = average yearly eamings of other family members (dollars)
NEIN = average yearly nonearned income
Assets = average family asset holdings (bank account, etc.) (dollars)
Age = average age of respondent
Dep = average number of dependents
School = average highest grade of school completed
Source: D. H. Greenberg and M. Kosters, Income Guarantees and the Working Poor, The Rand Corporation,
R-579-OEO, December 1970.

10.32. Refer to the Longley data given in Section 10.10. Repeat the regression
given in the table there by omitting the data for 1962; that is, run the re-
gression for the period 1947-1961. Compare the two regressions. What
general conclusion can you draw from this exercise?
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TABLE 10.15 U.S. CRIME DATA FOR 47 STATES IN 1960

Observation R Age S ED EXo EX4 LF M N NwW Uy Us w X
1 79.1 151 1 91 58 56 510 950 33 301 108 41 394 261
2 163.5 143 0 113 103 95 583 1012 13 102 926 36 557 194
3 57.8 142 1 89 45 44 533 9269 18 219 94 33 318 250
4 196.9 136 0 121 149 141 577 994 157 80 102 39 673 167
5 123.4 141 0 121 109 101 591 985 18 30 21 20 578 174
6 68.2 121 0 110 118 115 547 264 25 44 84 29 689 126
7 96.3 127 1 111 82 79 519 9282 4 139 97 38 620 168
8 155.5 131 1 109 115 109 542 9269 50 179 79 35 472 206
9 85.6 157 1 20 65 62 553 955 39 286 81 28 421 239

10 70.5 140 0 118 71 68 632 1029 7 15 100 24 526 174
11 167.4 124 0 105 121 116 580 966 101 106 77 35 657 170
12 84.9 134 0 108 75 71 595 972 47 59 83 31 580 172
13 51.1 128 0 113 67 60 624 972 28 10 77 25 507 206
14 66.4 135 0 117 62 61 595 986 22 46 77 27 529 190
15 79.8 152 1 87 57 53 530 986 30 72 92 43 405 264
16 94.6 142 1 88 81 77 497 956 33 321 116 47 427 247
17 53.9 143 0 110 66 63 537 977 10 6 114 35 487 166
18 92.9 135 1 104 123 115 537 978 31 170 89 34 631 165
19 75.0 130 0 116 128 128 536 934 51 24 78 34 627 135
20 122.5 125 0 108 113 105 567 985 78 94 130 58 626 166
21 74.2 126 0 108 74 67 602 984 34 12 102 33 557 195
22 43.9 157 1 89 47 44 512 9262 22 423 97 34 288 276
23 121.6 132 0 26 87 83 564 953 43 92 83 32 513 227
24 96.8 131 0 116 78 73 574 1038 7 36 142 42 540 176
25 52.3 130 0 116 63 57 641 984 14 26 70 21 486 196
26 199.3 131 0 121 160 143 631 1071 3 77 102 41 674 152
27 34.2 135 0 109 69 71 540 9265 6 4 80 22 564 139
28 121.6 152 0 112 82 76 571 1018 10 79 103 28 537 215
29 104.3 119 0 107 166 157 521 938 168 89 92 36 637 154
30 69.6 166 1 89 58 54 521 973 46 254 72 26 396 237
31 37.3 140 0 23 55 54 535 1045 6 20 135 40 453 200
32 75.4 125 0 109 20 81 586 264 97 82 105 43 617 163
33 107.2 147 1 104 63 64 560 972 23 95 76 24 462 233
34 92.3 126 0 118 97 97 542 990 18 21 102 35 589 166
35 65.3 123 0 102 97 87 526 948 113 76 124 50 572 158
36 127.2 150 0 100 109 28 531 264 9 24 87 38 559 153
37 83.1 177 1 87 58 56 638 974 24 349 76 28 382 254
38 56.6 133 0 104 51 47 599 1024 7 40 99 27 425 225
39 82.6 149 1 88 61 54 515 953 36 165 86 35 395 251
40 115.1 145 1 104 82 74 560 981 26 126 88 31 488 228
41 88.0 148 0 122 72 66 601 998 9 19 84 20 590 144
42 54.2 141 0 109 56 54 523 9268 4 2 107 37 489 170
43 82.3 162 1 29 75 70 522 996 40 208 73 27 496 224
44 103.0 136 0 121 95 26 574 1012 29 36 111 37 622 162
45 455 139 1 88 46 41 480 9268 19 49 135 53 457 249
46 50.8 126 0 104 106 97 599 989 40 24 78 25 593 171
47 84.9 130 0 121 20 91 623 1049 3 22 113 40 588 160

Definitions of variables:
R = crime rate, number of offenses reported to police per million population
Age = number of males of age 14—24 per 1000 population
S = indicator variable for southern states (0 = no, 1 = yes)
ED = mean number of years of schooling times 10 for persons age 25 or older.
EXo = 1960 per capita expenditure on police by state and local government
EX1 = 1959 per capita expenditure on police by state and local government
LF = labor force participation rate per 1000 civilian urban males age 14-24
M = number of males per 1000 females
N = state population size in hundred thousands
NW = number of nonwhites per 1000 population
Uy = unemployment rate of urban males per 1000 of age 14-24
U, = unemployment rate of urban males per 1000 of age 35-39
W = median value of transferable goods and assets or family income in tens of dollars
X = the number of families per 1000 earnings '/, the median income
Observation = state (47 states for the year 1960)
Source: W. Vandaele, “Participation in lllegitimate Activities: Erlich Revisted,” in A. Blumstein, J. Cohen, and Nagin, D., eds., Deterrence
and Incapacitation, National Academy of Sciences, 1978, pp. 270-335.
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