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ELECTROMAGNETIC INDUCTION

We know that when current starts passing
through a wire a magnetic field is produced in the
space surrounding the wire. But does current starts
flowing through a wire when it is placed in a
magnetic field? We know that when a current
carrying wire is placed in a magnetic field, it
experiences a force and moves. But can current
flow in a wire if it is moved in a magnetic field ?

Only experiments can tell the truth.

Faraday conducted a series of experiments to
study such phenomena.

4.1 4 Faradays experiment

In Fig.4.1, C is a coil of wire connected to a
sensitive galvanometer G, NS is a bar magnet held
near to the coil. Obviously magnetic flux from the

Fig. 4.1

bar magnet passes through or linked with the coil.
If the distance between the two decreases, the
magnetic flux linked with the coil increases and
vice versa. If there is current in the coil,
galvanometer shows a deflection. Current flows
in the circuit only ifan emf’is induced in the circuit.

Faraday made the following observations and
arrived at important conclusions.

1. When the coil and the magnet are ar rest,
there is no deflection in the galvanometer.

So if magnetic flux linked with a coil does not
change with time no emf is induced in the coil.

2. If any one of them, magnet or coil, is kept
Jixed in its position and the other is moved towards
and away from it, then deflections occur in the

galvanometer in opposite directions. If the two
(coil and magnet) are moved with differen,
velocities, then also a deflection is produced in th,
galvanometer.

So, whenever there is relative velocity betwegy
amagnet and a coil i.e., magnetic flux linked wity
a coil changes with time, an emf is induced in the
coil.

3. If the speed of approach or separation of
the magnet and the coil is increased, the deflection
increases proportionally and if the speed is
decreased the deflection decreases.

So, the induced emf is proportional to the
time rate of change of magnetic flux linked with
the circuit.

4. Direction of current was observed carefully
for different motions of the magnet and the coil,

He arrived at the conclusion that the direction
of the induced emf is such that it opposes any
change of magnetic flux in the circuit. Induced
emf tends to decrease the flux linked to a coil
when magnetic flux linked to it is increasing and
vice versa.

He performed many other similar experiments
with electromagnets, instead of magnet, Lenz and
Henry also independently made similar
experiments and observations.

The phenomenon thus discovered is known as
electromagnetic induction. We shall now study the
basic laws of this phenomenon.

4.1.1 Faraday’s law and Lenz’s law

Faraday’s law : Whenever there is a relative
velocity between a magnet and a coil or the
magnetic flux linked with a coil changes with time,
an emf'is induced in the coil. The induced emf(€)
is proportional to the time rate of change of
magnetic flux (b, ) linked with the coil,

(1(1),"
Tdr

m

eoc
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Lenz’s law : The direct;
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Combining the ty, laws v induction.
¢ ¢ get

d(bm

- m

o dp e 4.1)

Negalive SIZn comes from Lenz’s law that e

glways PPP‘]’FGS the change of flux. In SI unit the
proportiona Ity constant comes out to be 1.

d®, Wb
Unit of "gt—* is —

€=

s As C

[f there ar¢ N turns in a coil and magnetic flux
linked with cqch turnis @, , the total flux linked or
fux linkage is N®, the above eqn. becomes

do

e=—-N g e

The eqn. 4.1 or 4.2 is the basic form of
Faraday-Lenz’s law.

By changing magnetic flux linked with a coil
periodically with time, therefore, we can generate
periodically changing emf. This fact is utilised in
the construction of transformer.

41.2 Lenz’s law and conservation of energy

Lenz’s law asserts that induced emf opposes
the change of flux. To produce change of flux,
therefore, some external agent must do the
necessary work against the induced emf. Hence
we get the induced emf by doing work. Thus
Lenz’s law supports the principle of conservation
of energy.

41.3 Faraday’s law in integral and differential
forms

In Fig. 4.2 C is a single turn of wire or a coil.
Magnetic flux (&,,) pascs through it. If the
magnetic flux changes with time an emf (€) 18
induced in C.

C
Fig. 4.2

We know emf is the line integral of an electric

field in a closed path. Therefore when an emf € is

induced in a circuit, associated electric field E is

also induccd init.

127

The c_:mf € of the above eqn. 4.1 can be written
as the line integral of the induced electric field
F around the coil.

e=[E-di

¢
Here C is the boundary curve of the coil.
The magnetic flux @, can be written as the

surface integral of the magnetic field B :
, =B da
S

Here § is the open surface enclosed by the
curve C.

Substituting these two in eqn.4.1 above, we get

[E-di =-i(j1§-da]

C di\

If the circuit is fixed, the time derivative can
be moved inside the surface integral and then it
becomes partial derivative, because magnetic
field may vary in space. The equation becomes

This is the integral form of Faraday’s law.

By Stokes’ law the line integral of electric can
be written as the surface integral of its curl and so
the above eqn. becomes

s S
Since the above equation holds for any arbitrary
surface S, we get

[l;]E-dT=I(€’xE)-r?da=—I—a£~13da

This is the differential form of Faraday’s law.

From eqns. 4.3 and 4.4, we sce that the line
integral of the induced electric field overa clloscd
path and its curl are non-zero. Hence thl§ is not
of the same naturc as that of the clcctrosmt}c field.
Itis non-electrostatic field. Also we notice t?mt
this field is produced by a time-varymng

metic field.
”la:li‘llll(i;‘(;sfi indeed a fundamental discovery of

\at when magnetic field varies in time

Faraday tt
an electric field is produced. We came &cross &
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on or a new relation between

new phenomen
snot revealed

electric and magnetic fields, which i
in magnetostatics.
4.1.4 Motional emf

Now we shall study another discovery of
Faraday that if a conductor is moved through a
magnetic field, cutting the field lines, an
electromotive force is induced across its ends.

This is called motional emf.

This phenomenon, however, can be predicted
from other known laws of magnetostatics. Hence
it is not a new phenomenon. Now let us see how
the emf arises and what its value is.

We take a simple situation. There is a constant
magnetic field B along the Z-axis, Fig.4.3. A piece

/0% 5
i
X PYS+

Fig. 4.3

of conducting rod PQ is lying parallel to the X-
axis. It starts moving along Y-axis with a constant

velocity v.

~B=Bk and V=v

When the conductor moves, the free electrons
in it also get the motion. So, each electron moving
in the magnetic field will experience the Lorentz
force

F. =(~e)i x B=(-e)vB(j x k)

=_evB({)=-evBi

By the action of this force, free electrons in
the conductor start moving towards the end Q and
accumulate there and deficit of electrons grows
at the end P. P gets positive potential and Q gets
negative potential. As a consequence of this, an
electric field £ develops which acts from P to 0.
The Lorentz electric force on a free electron due
to this electric field E is

F'=(-e)E =—e(-Ei) = eEi
When the two opposite forces 7 and f
become equal, the motion of electrons towards Q

stops. This happens when
evB=eE . E=vyB.

Nl Ty T -
. e -
h g

If the electric potentials of p and £ 2'¢ Vpan,
7o and length of the conductor pQ 15 /> We oy
write

Vp— VQ = E-l=vBL

Thus we find a very interesting phenomengy,

When a conductor of length / moves Witil
velocity v at right angle to a magnetic field B,
potential difference develops between the two eg
of the conductor. The value of the potent
difference is equal to €, = vBIl. This is calleg

motional emf. .
If we join the two ends of the moving rod p

to a tiny bulb it would glow, F ig. 4.4. The movin,
YA —

Fig. 4.4
rod can supply current just like an electric cell,
Now the question is where the energy coming from
when it sends current.

To get the answer, we suppose that current
flowing in the circuit is /. As it flows through the
external circuit, it also flows through the conductor
from Q to P. The conductor is now carrying current
I as it moves through the magnetic field 3.
Thereforc_e. the conductor experiences a force

F=II xB=1IB(i xk)=-IIB]

The direction of the force is opposite to the
direction of the motion.

Hence in order to move the rod with a constant
velocity someone must pull the rod with the same
force in the positive direction of Y-axis. Hence h¢
is supplying the energy necessary to send the
current. Thus mechanical energy lost by th
external agent is converted to electric energ):
This is a very satisfactory result; it upholds the
principle of conservation of energy. Work is to b¢
done to get energy.

Now we proceed to get a more useful

expression for the motional emf.
Work done by the motional emf ¢ ¢ send

current / for time At is
AW =Em IAt .
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. that time the rod has moved through a
puri® " Ar. The work done by the external

distailgreloss of energy of the external agent during
gt ™ o,
o . e ls
et Ayt = —FAd = ~IIBAd.
L gy lav of conservation of energy we have
AW -
=t 1ar=—IIBAd
(.);, gm'At=~l-B-Ad .................... (1)

ow area swept over by the rod in time At is

~ IAd. Magnetic field is flux density.
N . Magnetic field lines or flux the rod cuts

mrough in time At is A®, = BAa = BIAd.

.. From eqn.(i) we can write, €,,=—

AD,,
At

We put the condition Az — 0 to see what

hap

Motional emf, €,=-

at

d
“:itﬂr of length L rotating
8ht angle to a uniform

magr}etic field B, Fig.4.5a.

It
i
g
Wil|
tnds

Q
3252_9

SMoving in a magnetic
Cutting through

Brctic flux, motional emf

b .
© Induced across the
the conductor. We

pens at each instant. We get :
do,,
................... 4.5)

dt
We find that motional emf is equal to the rate

|4t which a conductor cuts through magnetic
- flux. In fact this is the basic principle of electric
generator.

In a generator conducting wire of different
shapes are moved or rotated in a constant magnetic
field by different sources of energy and electric
energy is generated by producing motional emf.
Since here we get a potential difference from other
source of energy, we call it emf.

Now we observe that eqns.4.4 and 4.5 are
identical in form and both are called Faraday’s law,
but these two represent two different facts.

Let us recapitulate the difference: The first
®Quation essentially tells that a time varying
Magnetic field produces an electric field; the second
¢ tells that an emf develops across the ends of a
®nductor, moving in a magnetic field.

M5 EMF induced at the ends of a conductor
rotating with a uniform angular velocity
atright angle to a uniform magnetic field

We consider a con-

1
]
|
]
1

....

- -
------

Fig. 4.5(a)
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notice that linear velocity is different for different
portions of the conductor, so we have to calculate
the emf in terms of angular velocity. We consider
an element of the conductor of length dx at a
distance x from the centre O. EMF developed
across that element of the conductor is de = Bvdx
= Baoxdx.

L
. Total emfis &= [ Boxdr= %BmLz .
0

If n be frequency of rotation of the rod, then @
= 2nn. EMF, e = nnl?B.

If instead of a conducting rod, we are given a
conducting disc of radius L rotating in the magnetic
field B with the same frequency n, Fig.4.5b then
we can imagine the rod as a Disc
radius of the disc. The rate of
cutting magnetic flux is the
same and therefore the emf
induced between the rim of the
disc and its centre is the same
as above. Notice that all points
on the rim are at the same
potential. Such a device can
produce emf by doing work in rotating the disc.
Notice some external agent must supply the energy
to rotate the rod or the disc, because by Lenz’s
law induced emf opposes the rotation. This device
is called homopolar dynamo, though it has no
commercial value as a generator. But all real
generators work on this principle.

4.1.6 Flow of charge when magnetic flux
changes in coil

There is coil of N turns connected to a closed
circuit; total resistance of the circuit is R. A
magnetic flux is linked with the circuit. Now
suppose the flux linked to the circuit undergoes a
quick change from @,, to @, intime . We like
to know how much charge flows through the circuit
during this time as a result of this.

EMF induced as result of magnetic flux change
is by equation 4.2

Fig. 4.5(b)

dd,
e=-N o

Here @, is the flux through a single turn.
Current induced in the circuit is

e_N do,,
R R dt

I=
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Charge flown in time ¢ is
t N @,
Q=£Idt=—f [ do,
@

i
= _ N(q)f _(Di) _ (Dm, "(sz (4 6)

We notice that the amount of charge induced
by the change of flux does not depend upon the
rate of change of flux, but depends on the
resistance of the circuit and change of flux.

4.1.7 Measurement of charge by ballistic
galvanometer

- When a sudden change of magnetic flux occurs
In a circuit, some charge flows through the circuit
within a very short time. This induced charge can
be measured by ballistic galvanometer. Ballistic
galvanometer is nothing but ordinary suspended
galvanometer with the following modifications.

The requirement of a ballistic galvanometer :

1. Time period of the coil of the galvanometer
should be sufficiently large compared to the time
taken by the induced charge to pass through the
circuit.

2. Damping of the movement of the coil should
have minimum value.

If the first condition is satisfied, the coil
practically cannot start moving before the whole
charge passes through it. As the charge passes
through it, the coil gets an angular impulse when it
is almost at its rest position. The kinetic energy
thus gained by the coil produces a deflection of
the coil. It is found that the first throw of the coil
is proportional to the charge passed through it.
This first throw, however, is reduced by the force
of damping. Hence the second requirement is

important.
Time period of the moving coil is given by

T=2:rc\/Z
c

Moment of inertia (/) of the coil is increased
by increasing the breadth of the coil and by using
a very delicate suspension, so that the restoring
torque per unit twist (c) is very small. Use of
broader coil, on the other hand, increases the air
gap between the coil and pole pieces of the
galvanometer. This decreases the magnetic field.
To keep the value of the field high, the soft iron
core between the pole faces is made wider.

|

A HAND BOOK OF DEgpy .
) HYSE(:S

When the coil moves in the magne;, "
induced emf develops .which Opposes i, i
by Lenz’s law. This is cal]_cd clecirop,
damping. To reduce this damping, the ;) iy
on a non-conducting frame such as wo, d cbou!]d
or bamboo. Still there is inevitable dampip 'd“n"e
air resistance. For this damping even the firsy N
is reduced somewhat. This effect dug {, ity oy
is corrected by determining the logaril},plr!g
damping. We shall not discuss the theory Ofballi]?tl-c
galvanometer. We only quote the resy, it

Charge passed through a ballistic galvay -
is given by T

cT A
Q=3B o (] +5) = k0, (1 +%)

The constant 4 is the galvanometer congtay

Here ¢ = restoring torque per unit twist of ¢,
suspension, n = number of turns in the coil, 4-
area of the coil, B=magnetic field, T'=time perio
of the coil in open circuit, 6, = the first throw apg
A is the logarithmic decrement.

The formula for logarithmic decrement is g

follows : If 6,,6,,0;,......0, be the successive
amplitudes of oscillation of the coil alternately to
the right and left, then

A= ﬁloge g;— :

To determine the logarithmic decrement, we
first note the first throw (6,) and then go o0
counting the successive throws and note the 11th
throw (6;,), say. Both will be on the same side
Then from the above formula we can calculate %-

4.2 4 Selt-Inductance

We know that if a coil € of single turn or ma"/
turns carries a current /, a magnetic field B 15
produced within it and in the surrounding spact,
as shown in Fig.4.6. Hence a magnetic fluX (Pn

— AW AW AW AW AW A -
i AWANWA
==‘.'===:==='.'='.'==

Fig. 4.6

- . 'nce
is linked with the coil. It is called self'ﬂux'rsrlenl,
magnetic field is proportional to the ¢

el
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rmmexic flux @, is also proportional to the current,

(Y G—— (4.7)

The proponiQnality'constantL is called the self-
l.qudance or simply inductance of the coil. The
-'alue of L depends on the geometrical factors of
 coil, like S1Z€; shapc? and number of turns of the
oil. 1f instead of air or vacuum, there is a
ferromagnetic rpatenal as core in the coil, self-
ductance may Increase more than thousand times.
Here We assume the absence of such materials.

Now suppose that the current in the coil varies
sith time and so the magnetic flux changes with
fime. According to Faraday’s law an emfis induced
in the coil which opposes the change of current.
The induced emf is given by

The negative sign indicates that the emf tends
to decreases the current if it is increasing and
emf tends to increase

Increasing
the current if it is ! !
decreasing. In other W
words, the direction of e
induced emf is opposite Decreasing

to current, if current is I I
increasing and induced W’_
emfis in the direction of &

the current if the current
is decreasing, as shown in Fig, 4.7. This induced
emf is sometimes called back emf.

4.2.1 Definition of self-inductance

From eqns.4.7 and 4.8 we can get two
equivalent definitions of self-inductance :

1. Self-inductance of a coil is numerically equal
to the magnetic flux linked with the coil when
unit current flows through it. @, = L, when =1

2. Self-inductance of a coil is numerically equal
to the induced emf developed in the coil, when
time rate of change of current in it is unity.
dl
7{-—1.

We see from the above discussion that an
electric circuit always opposes any change Qf
current passing through it. This phenomenon 18
called self-induction. 1t is analogous 10 the
property of inertia of matter which opposes any
change of motion. Self induction occurs whenever

Fig. 4.7

e= [, when

131

::1;3;1 (l:E r’crle(:trcf;ﬁt changes, but is absent when a
it o ows. As a resul? any change in
a circuit does not occur instantaneously.

In fact in a dc circuit self-induction occurs only
}Vl.len current is switched on and switched off and
1t 1s an undesirable disturbance. But in ac circuit
f:urrent changes continuously and self-inductance
Is always present in the circuit and plays very
1mportant role.

Magnetic energy due to self-induction :

As soon as we switch on a circuit the current
starts growing from zero to its final value . This is
called growth of current in a circuit. Let us see
the effect of self-inductance during this growth of
current in a circuit. As current increases from zero,
the magnetic self flux linked with the coil increases
from zero and as a result an induced emf opposing
the increase of current develops. So, to establish
the current in the circuit to its final value, the source
of emf must do some work against this induced
emf. Let us calculate this work.

Suppose the instant ¢ at which current 1s i,
induced emf is €. The work done against the emf
in an elementary time interval dt about £ is

di

dW =eidt = L=-idt = Lidi
dt

Current increases from 0 to final value I.
. Total work done against the emf is

I
Mgl
W—é[lel—zLI .................. (4.9)

This work done by the source of emf is stored
up in the magnetic field established in and around
the coil.

-. Magnetic energy stored up in the coil is

Uy =3 LI L (4.10)

From eqn.4.9, we see that 2U, =L, when/=1.

Self-inductance of a coil is numerically equal
to twice the magnetic energy linked with the coil,
when unit current flows through it.

When the current is switched off in a circuit
the current drops to zero. This is called decay of
current. The magnetic field linked with the coil
collapses. As soon as the current begins to
decreases self induced emf develops, which now
tends to maintain the current by the energy stored
in the magnetic field. But the current decreases

e
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CXPoner?tially to zero as the energy stored in the
magnetic field is exhausted. Often a spark is
observed when current is switched off} this is
produced by the emf develops during decay of
current in the circuit. Therefore the cnergy is
ultimately converted to thermal energy.

4.2.2 Unit and dimensions of self-inductance

I.{nit of self-inductance is henry (H). A coil has
self-inductance 1 H if (i) flux linked with the coil is
one weber (Wb) when current flowing through it
1S one ampere or (ii) when induced emf'in it is one
volt, when current in it changes at the rate of one
ampere per second.

Now we can get a new unit of Mo in terms of
henry.

: . IT-m_ Wb _H
Unit of p, is A mA - m
[, ] [ML*T2A"']
L]=—"11-= =[ML2T2A2

4.2.3 Calculations of Self-inductance

(i) Solenoid :

In the last chapter we have calculated the
magnetic field inside a coil in the form of a solenoid.
We have seen that if the length of the coil is much
greater than the radius, the magnetic field is
reasonably constant over the whole cross-section
and is given by eqn. 3.18 B = pynl,

where n is the number of turns per unit length
and / is the current.

Suppose A= area of each coil, / = length of the
coil. Then total number of turns in the coil = nl.

. Total magnetic flux linked with the coil,

®,, = nlAB = pon?lAl.

When/=1,®, =L.

. Self-inductance of the coil,

L = pgn?id = pgN*All........... (4.11)

If N = total number of turns in the coil, n=N/ 1.

If there is ferromagnetic material as core of
coil and relative permeability k,, the self
inductance would be

L,= kL

k,, may be as large as 5000. This is a general
phenomena true whenever air core is replaced by

ferromagnetic materials.
In eqn. 4.12, it is assumed that the

-------------

Y
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ferromagnetic core completely fills (he Soler
If it fills partly, still the flux increageg andnm ,
inductance increases. We suppose thay self.
solenoid the core is partly filled by one malcnf? i
cross-section 4 and relative permeability, d‘ (
partly by another material of cross-sectiop A": :::

relative permeability Ko, - Theniits SC]f-inducmnc
¢

is given by
L= pon*t(ky, A +kn, 42)

(ii) Toroid :

We have calculated the magnetic field Withiy
an endless solenoid (also called anchor ring) in the
last chapter. Let N = total number of turns, R
mean radius of the solenoid, 4 = area of ¢rog
section of the solenoid and / = current flowing
through the solenoid. If we suppose that the crog.
section is not large, the magnetic field withip
may be assumed to be constant given by eqn.3 23

_FHo NI
B_2n R

.. Magnetic flux linked with the coil is

2
o =pna=PO Ny Po N,

2n R 2r R
Putting /=1, we get the self-inductance of the
. Ho N24
L=fo 4
toroid, R (4.13)

(iii) Straight wire :

Self-inductance of a straight wire can be
deduced in a very simple way by calculating
energy.

Let R be the radius and / the length of the wire.
Current flowing through it is /. The magnetic field
B at a distance r(r < R) from its axis, Fig.4.8, can
be found by Ampere’s law:

[B-dl =B-2mr =p,l",

Fig. 4.8
where I is the current enclosed by th
radius . We assume that current is €4

e
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fLEC
disnilmlc(l over the whole eross-section of the wire,
(het
g e Ry
nh* «W  R¢ 2n p2

Magnetic field energy per unig volume
nss(ll:ill'c(l with that mugnetic fiel will be
cleutnted below, From eqn.d,21

1y

Hyy 55
9 Iy
“ 10

Substituting the value of 2 from above we gel

P L L7 T 72
2 4n® RV g2 pi
We consider an elementary hollow coaxial
eylinder of the conductor of radius » and thickness
dr. Volume of this cylinder is dV = 2y,
Energy contained in this volume clement is
th, dV.

- Total energy inside the conductor is

R m 12 R
- Ok |22 e
Up= lj).u,,,dV iy (',[' 2nrdr-|

Mo 2 RY Wyl
= e A e = L 2

n2 RO 4 8n2

We know that if the inductance of the wire is
L and current flowing through it is /, the magnetic
energy is

14,2

Um ='2-I‘I
N I R TY
o 2“ 8 2

¢ . _ Ho
. Self-inductance of the wire is L= T

. Self-inductance per unit length of a straight

wire is Bo _ 11077 henry......... (4.14)
T8t 2

We note that its value is very small and it is
independent of the radius of the wire.
Now let us calculate self-inductance by
calculating the flux linkage. .
The ficld at a distance r from the axis is
Ko, r
B=5lly

Now we consider a thin cosaxial hollow
linder of the wire having radii » and r + dr,
cylinde

133

e field lines are coneentric
he Fig, 4.9, The flux passing

Figd.9, The magne
cireles uy shown int
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through the area da = [dr due 1o (he above field
at a distance # from the axig iy

e Boddg = 0y
d®, =B du= o / 7(7/(”

This flux can be considered as a tubular element
that encircles a certain fraction of the total current
1. This fraction is 7tr2 / nR2,

. Flux linkage corresponding to this element
is

. W)
Ao, =Koy r gt Bo 1l s

()
2 R2 R2

21 R
. Total flux linkage
R
. EQ.._ILI,-] r:&i.ﬁi:&ll
T2 RY . 2r Rt 4 Bn

Putting / =1 and /=1, we get the self-inductance
of unit length of a wire is

L
L=t
8n
We get the same result as above,
(iv) Two parallel wires :

We consider two parallel wires 4 and B
separated by distance d. Current / is going away
from A and coming back by B, Fig 4.10. Let radius
of the cach wire be r,

A = 0
ST
d dx
. —e 1 ——p
B(Q) -IL 0
T
Fig. 4.10
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Putting [ =land [ = 1, we get the self-inductance
per unit length of two parallel wires of radius r
and separated by a distznce d is

We notice that self-inductance is very small if
the separation between the two coils is very small,
but L = 0 only if the two wires are in contact,
d-r=r

Non-inductive windings : In resistance box
different standard resistances are made by coils
of wire of desirable lengths. Care is taken so that
these coils do not have undesirable
inductances. For this purpose the !
insulated wire of the desirable
length is first folded on itself and
then wound on a bobbin, Fig.
4.10a. The current in one half
flows in opposite direction to that
on the other half. Physically it
means that the magnetic field
produced by current in one half
almost cancels the field duc to the
current in the other half. Hence
magnetic flux linked with the coil
is almost zero.

From the above calculation also, we see that
one Self-inductance is reduced to a very small
value. But it is not zero, unless the two touch.

Fig. 4.10(a)

N
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{v) Two coaxial cylinders :
In Fig. £.11 we see two coaxial Cf”linde,-s
radius of the inner cylinder is a and the iNner raqlh*e
/] *ﬁL“‘
I_;,/‘ﬁ \ 5 ‘ :i,.::-
Generztor f':l."] g | '?rm_d’
et _,____\T; = --é'T“‘:?-:-fl_
"'\J T
o —
I D
Fig. 4.11

of the outer hollow cylinder is b. Current ; flows
from the generator to the load through the Outer
cylinder and returns by the inner conductor,
The magnetic field due to the inner conductoy
at a distance r from the axis of the inner conductoy
5
p=torl,

2w r
Outer conductor has no field. Therefore to find
the self-inductance we consider an area of
thickness dr and length / at a distance r from the
axis of the inner conductor. The flux through this
area is

do, =Xel; 4
2t r

. Total flux through the area of length / in the
region between the two cylinders is

b
Ho  (dr _ Mo b
CD = —_— —_—— =z
m=5 Il_[ p anlloge .
a
Putting /=1and /= 1, we get the self-inductance
per unit length of the coaxial cylinder is

b

a

Ho
L=0
27

4.3 _d Mutual inductance

Suppose there are two coils of wire Cjand %
near to each other, Fig. 4.12, and there 1 i

log,

C, G |
ST e e
HIIVT‘J i ; ‘V"J‘Cr ::
5 I,
]l ]I
— G
Fig. 4.12
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‘gnclic material nearby, Current I, passes
i pic fie , ) i
s (- Magnetic ficld due to €, at the location

fhrouglt &1- =T .
Jf e coil C; is proportional to current ly.

fherefore magnetic flux (P, ) linked with the
v S rtion: s eurre
il Cy 18 also proportional to the current 1.

. d) :A”lzll ..................... (l)

e m

gimilarly if current I flows in coil C,, magnetic
fux (®, ) linked with the coil C, is given by
" = M2|12

It is found that M|, = M,, = M. This
p;oporlionality constant is called the mutual
inductance of the two coils. Its value depends on
the geometrical factors of the two coils and on
their relative orientations and proximity. The two
coils are magnetically coupled; magnetic field of
one is linked with the other. So, change in current
in any one induces emf in the other.

If current in any one of the two coil changces,
an emf is induced in the other coil. This induced
emf will produce a deflection if there is a
galvanometer G joined to the other coil. For
example, if current /; changes, emf induced in the
coil G, is

i)

Domy _
dt dt

From the last three equations we can get two
equivalent definitions of mutual inductance of
two coils as follows:

1. Mutual inductance of two coils is numerically
equal to the magnetic flux linked with one coil when
current in the other is unity.

2. Mutual inductance of two coils is numerically
equal to the emf induced in one coil when time
rate of change of current in the other coil is unity.

4.3.1 Mutual induction and transformer

We see from above that change of current in
one coil produces change in the current in a
neighbouring coil, because magnetic flux of one
coil is linked with the other. This phenomenon s
called mutual induction. In most situations, thisisa
disturbance. We should keep different coils
sufficiently far from each other to getrid of mutual
induction. '

Mutual induction is utilised in the construction
of transformers. Transformer consists of two

EZ=—
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coils, wound on a common soft iron core, Fig.4.13.
I'he core is usually made of laminated sheets
placed one over the other and insulated from one

= e

p— s ://f""""—’:y—"'
p—

= =2 =

—= = ==
['_%__m— s %_,m_____ﬁ $

Step-up wransformer Step-down wansformer

Fig. 4.13

another. The two coils are magnetically coupled;
magnetic flux of one is linked with the other with
minimum leakage. Alternating current is passed
through one coil, which is called primary coil (P).
By mutual induction alternating emf is induced in
the other coil, which is called secondary coil (S).
This induced emf in the secondary coil can be used
as input to run any electrical devices. In an ideal
transformer, it is found that

Secondary voltage (E)
Primary voltage (£,)

No. of turns in the secondary (N;)
No. of turns in the primary (N )

IfN,>N,, E;> E, In this condition, we get
higher voltage from a lower one. Then it is called
a step-up transformer.

IfFNg<N,,E <E, In this condition, we get
lower voltage from a higher one. Then it is called
a step-down transformer.

4.3.2 Relation between self inductances and
mutual inductance

We consider a toroid of small cross-section in
which there are two coils C; and C, of insulated
wires, one wound over the other. Let N, and N,
be the number of turns in C, and C, respectively,
Fig.4.14.
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If 1; be the current in C,, magnetic field
produced within the toroid is

p=Bo My
2w r
Here r is the mean radius of toroid. The field is
assumed to be constant.
- Flux through C| is

N{

I, A
®,, = BN, 4 = Hoi14 _
1 ] o L

Flux through C, is

oM Ny 11 4

_ _H
D, =BN,A= oy =M,

. _ B4
b 2mr

If I, be the current in coil C, then by exactly
similar calculation we shall arrive at the relations

and M, = o122

2nr
Here by definitions L, and L, are the self-
inductances of the coils. M, and M,; are the
mutual inductances representing the effect of C;
on C, and C, on C;, respectively. We find
My, =M,
So mutual inductance between two coils is

represented by M.
From relation (i) and (ii) we find that

LLy=M? or, M= L1

We get the relation between self-inductance
and mutual inductance in the very special
condition that all the flux produced in one coil is
linked with the other. This is the maximum
magnetic coupling that is possible between two
coils. Hence we can conclude that the maximum
value of mutual inductance of two coils having self-
inductances L, and L, is given by

M ax =\leL2

In fact, there is always some leakage of flux

2
LN _&%’ﬁ...... (ii)

and therefore, M <./, L, .
By definition, coefficient of coupling of two
. . M
magnetically coupled coils, k = —.
JLL;
We see that if the coefficient of coupling f =1,
all the flux produced by one coil is linked by

|
A HAND BOOK OF DEGREE pyy

the other. It is also called tight coupling, |4 is g
n

ideal condition.

If k<1, it is called loose coupling; the, i
leakage of flux.

If there is no common flux between twq Coily
they are said to be magnetically isolated, |p, this’
case M =0,k =0.

4.3.3 Energy stored in two magneﬁca"y
coupled coils

We consider two coils C; and C), which hay,
self-inductances L, L, and mutual inductance 5
Currents through them are /) and 7,, Fig.4.15, W,
like to find the magnetic C Cz
energy stored in this system.

We have to find how much

work has to be done to L
establish these currents
against the emfs induced by
self and mutual induction.

Let i; and i, be the
currents in the two coils C; and C, at an instant
during the growths of current from 0 to /; and
from 0 to /.

The emfs induced in the two coils at that instant
are

Fig. 4.15

diy _ . _di,
q=-hg TM

di, _  di

and €,= Lthz ME}—

The sign ¥ before the second terms is
necessary, because coupling of two coils may be
of two kinds. If the currents in the two coils aré
flowing in the same direction, increase of flux in
one coil causes increase of flux in the other. This
is called positive coupling and negative sign should
occur in the above equations. If currents, however
are in opposite directions, then increase of current
in one causes decrease of flux in the other. This i
called negative coupling and positive sign should
occur in the above equations.

In time dt charges flown in the two coils aré
respectively i;dt and i,dt.

Work done against the above emfs in time
the two coils are

dtin

di

dw, =€, ldt = L, %—izdt iM%l?'izdt

—
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To get the total work done to establish currents

4, in the tWO coils we have to integrate dW
2:; 0 %0 J; and from 0 to I,. We get

W =%L,1,2 +MI,], +%L21§

This is the energy stored up as magnetic field
in the system of two coils.
- Energy of the system,

1
U, =%L,I,2 £ MhTy +5 113

The first and the third term are the energies
Jue to self induction. These are called the self
energies and these arise from the interaction of
each coil with its own field. The second term is
mteraction arising from mutual inductance. We can
glso express the energy as

Up =L HT £ MD) + 5 1L £ M)

1

Here®,, and @y, are the total magnetic

fluxes linking C; and C, respectively.
43.4 Mutual Inductance of two coils

1. Coaxial coils : In Fig.4.16 we can see two
coaxial solenoids S
and P. The shorter
one § is wound over
P,the longer one. Let |||
n; be the number of
turns per unit length,
4 be the area of Fig. 4.16
cross-section of the coil P. If current through P is
I,the magnetic field near the middle if the coil Pis

B=ponl
If we suppose that there is no leakage of flux

and total number of turns of the coil S be N, then
the flux linked with the coil S is

q)m = NzBA = Nzu.onlIA

1

I

W

Putting 7 —1, we get the mutual inductance
between the two coils given by
M= pyNon A
Ifthe coil Sis within the longer coil P, then 4 in
the above formula should be the area of coil 5.

| -
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2. Two coaxial parallel circular coils :

In Fig. 4.17 we see
identical parallel coils C; - '
and C,, each of radius a a
and each having a turns _y]
placed at a distance x from
each other. If I be the
current passing through C,,
then the magnetic field at
0,is

sy

e e
/ 0
2N

Fig. 4.17

p—Mo_n2l na’ 7
4n (@ +7? )%

If we suppose that the field is uniform over the
cross-section of the coil, the magnetic flux linked
with C, is

®, = B-nmgt = bo _m2Ina’ .,

" AT (g2 442y
_ Ho 2n%a*n?l
4r (@2 +r? )%
Putting / = 1, we get the mutual inductance,

2

2,42
M= Ho 2n°a’n =
47 ( a? +r2 )3
From symmetry we shall get the same flux
linked with the coil C;.
. Mutual inductance between the two coils is
o = Po 2nfatn?
4n ( a?. + r2 )% J
4.5 _4 Inductors in series and In parallel

In many electric circuits we require to add self
inductance for different purposes. We use
conducting wire wound in the form of a coil. Such
coils have generally negligible resistances. These
coils are called inductors. As capacitors can store
electric energy, inductors store magnetic energy.
These capacitors and inductors have very
important roles to play in alternating current circuits.

Inductors may be joined in series and in parallel
just like resistors and capacitors. We now like to
find equivalent inductances of such combinations
of inductors.

Inductors in series: In Fig.4.18 we see two
inductors of inductances L, and L, and having

L M L
1
1 1

Fig. 4.18
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negligible resistances, joined in series. We suppose
that the two coils are far apart so that there is no
mutual inductance,

Ifeurrent through the coils ata particular instant
is fand it i changing with time, emfinduced in the
tWo coils are

If the same emf s induced in a single coil for
the same variation of current, then inductance (L)
of that coil is the equivalent inductance.

dl _ dl dl
_LE!—-_L](—I'I-_L"TI SL=L+ L,

Now Suppose that the two coils are near to
cach other and the mutual inductance cannot be
neglected. Suppose the mutual inductance of the
two coils is M. Then the above eqn.(i) becomes

=LAl . dl . dr dl

€=-L ar ME LzE‘M‘

By the same reasoning as above we get the
equivalent or total inductance given by

L=L,+ L,+2M

In eqn. (i) we have assumed that the two emf
developed by mutual inductances are in the same
direction as those by self induction. This happens
when the currents in the two coils are in the same
direction and so, selfand mutual fluxes reinforce,
Fig.4.19a.

(a) (b)
Fig. 4.19
But in the opposite case, when the currents in
the two coils are in opposite directions, Fig.4.19b
and so the selfand mutual fluxes are in opposition,
we shall get

.. General relation for series combination is
L=L+ L #2M ... (4.19)

Inductors in parallel : In Fig.4.20, we see two
inductors of inductances L, and L, joined in parallel
and mutual inductance between them is M.

Let instantaneous currents in the two coils be
Iy and I, and they vary. We suppose that currents
in the two coils are in the same direction and so,

Y
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self and mutual fluxes reinforee, Thereg
induced in the two coils are Ore,
!
o -
o
!
Fig. 4.20
dl, dl,
“=~hg M
dl, di,

and &=L, — Skl

As the coils are joined in paralle] e

and total current, / = Il +1,.
Solving the above two equations by the Meth
of cross-multiplication, we get

FG;:E

dh __e(Lh-M) dl_ e(l-y
E A Ve T N

di_dh  dly el +1,-2m)
Now ar=a Y = LL, - M?

cee_ bL-M? g4 "

e L+ Ly 20 df eeeeeeee i

If L is the equivalent inductance of the
combination, we have €= —L% IOV (1)

Comparing (i) and (ii) we get the equivalen

inductance is
T = LILZ '_Mz
" L+L,-2M )
If the self and mutual fluxes are in opposition,
we have

I = I’ILZ -M?
L+L,+2M
General equation for parallel combination s

Loty =M
_m ................

If the mutual inductance may be neglected,

__Ll
YA

d
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4.6 A Energy stored in magnetic field

The energy of the magnetic field within a coil
of self-inductance L carrying current / is given by

eqn. Un =lle (1)

We consider a long solenoid and take a length /
of it at the middle. If the area of cross-section is
A, the volume of this portion within the solenoid is
Al When current flows through it, magnetic field
within this portion is quite uniform. Also tt.le
magnetic field is almost entirely contained within
this volume, as magnetic field outside a long
solenoid is essentially zero. The magnetic field is
given by

B = ponl ....................... (ii)

where / is current and 7 is the number of turns

per unit length of the coil.
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The self-inductance of this portion of the
solenoid is given by eqn.

L=pgn?ld e, (iif)

Substituting the values of L and I from (ii) and
(iii) in (i) we get

2
_1 2 B | _1B?

Um = "2—X Holt [4 x (m) = EH—OIA

This is the energy contained in volume /4 within
the solenoid. Therefore, magnetic energy per unit
volume or energy density is

U 2

Uy, =ﬁ'—=%ﬁ—o ....................... (4.21)

We have calculated it for the special case of a
solenoid, but it is true for all magnetic
configurations.

We did similar calculation for electric energy
density for the special case of a parallel-plate
capacitor.
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