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but
Var(,[}) < Var(f)

then how to choose between the two estimators? In this situation, where one estimator
has a larger bias but a smaller variance than the other estimator, it is intuitively plausible to
consider a trade-off between the two characteristics. This notion is given a precise, formal,

expression in the mean-squared error.
The mean-squared error for [ is defined as

MSE(f)=E[B- BT

=E[{B-E(B)} HED)- BT A

= E{ ~E(B)Y +E(E(f)- BY* +2E[{} —E(B)HE(B)-B}]
= Var(ﬂk)+(biasﬁ)2

This is so because the cross-product term vanishes, as shown below.

E[{ - E(B)HE(B)- BY1= E{BE(B)- 8- E(B)E(B)+E(B) B}

=E(B)E(B)-E(B)B-E(B)EB)+E(B)B
=0

_ Now, according to the mean-squared error property, if MSE( ﬂ ) < MSE(f3"), we say that
[ has lower mean-squared error, and accept it as an estimator of B.

Large Sample or Asymptotic Properties
These properties relate to the distribution of an estimator when the sample size is large, and

approaches to infinity. The important properties here are the following.

» Asymptotic Unbiasedness: ﬂ is an asymptotically unbiased estimator of 3 if

limE(B)=p

n—oo

This means that the estimator /3, which is otherwise biased, becomes unbiased as the
sample size approaches infinity. It is to be noted that if an estimator is unbiased, it is
also asymptotically unbiased, but the reverse is not necessarily true.

« Consistency: Whether or not an estimator is consistent is understood by looking at the
behaviour of its bias and variance as the sample size approaches infinity. If the increase
in sample size reduces bias (if there were one) and variance of the estimator, and this
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Unbiasedness of

Bzi%x

2%
_Zx(Y,-Y)

T
_Zxﬁhyzg
T
- zxil’l

Tal

=me

[ Z'xl = z(xl ")—{) =O]

where

It follows from (2.13) that

2xX,

S

_ E(X.' _)_()Xi
CI(x-X)
XX -XYX,

S YX?-2X3 X, +nX’
XX -nX

Y X 20X 40X

B ZX,Z —nX?

_ZXiz—n)_fz
=1

dwX =

I I

= lez = !
(Zx') Zaf

Zw)
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(2.12)

(2.13)

(2.14)

(2.15a)

(2.15b)
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+EW'£|
=(XZ“’1+'BZW‘X(’. CXw, =0and EW,X‘ =1)
=ﬂ+EW;51 '

From (2.12), we have

Takin bectations,
= E(ﬁ):E(ﬂ"_ZWlEl)

=ﬂ+EW;E(£¢)
=B [ E(g)=0]
This proves that ,B is unbiased.
Linearity of B
From (2.12), A
=X w.Y,

Since w,’s are a set of fixed values, we may write
B=wY, +w,Y, + ..+ wY

This shows that ﬂ is a linear combination of sample values of Y, the dependent Variab)e
Thus, £ has the Property of linearity,

Minimum Variance of Bestness for

In order to Prove minimum varjapce or bestness Property for B we shall compy

the variance of £ and show that it is Jower than the Vvariance of som
From (2.16), we have

B=F+qu

= ,q—ﬁsz,.q

= B-Ef)=S e [ E(B)=p]
Thus,
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=E wasf+22w,w,€,€,)
i<
:=zwilE(E,")+ZZw,w,E(E,{:‘j)
1<)
=0? Tw; [F‘(L,’)=0’2 and E(££)=0 fori#j)

-_-_—QJ—- (‘.'Ew," =——1~,—}

bt 2.
Let us now consider some other estimator, say [}, such that
ﬂ* - Z CIYI
where ¢, (i= 12 o n) represents a set of weights
Then,
f =Y (atpX +E)
—aYc+preX +L.¢E,
Taking expectations,

E(f)=0aSc+pleX L E(£,)=0)

(2.17)

(2.18)

It is clear that we require the weights to be such that f is an unbiased estimator. g\

imposes the conditions

Y., =0 and YeX,=1= Yex, =1

(2.

Let us now compute Var(B') accepting these conditions. Under these conditil

equation (2.18) reduces to
B =p+YcE = B -P=B ~E(f))=Lc&
Thus,
Var(f)=ELS ~E(B)Y
—E(ScE)
=E(Zcf€f +22c, cje,e',}
=Zc?E(ef)+2gc, ¢ E(€€)
=0> X K{'.'E(ef)=az and E(g,€,)=0for i# il
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¢ =W +( _"") ,‘)2 +2Xw, (c, -w,)

. S 2N (e —n
- E.." _—_-L"" + A.f(“ (2.21)
Note that
Ewl (‘-a '-"")
)
=Ywe,-Xw,
¥ l %
‘_(.I»\.. B .'.‘"’ =—__2-
N2 vl ( : in J
V.r l-'\i
Yy .
1 1 [ *Ycx, =1,asshown in (2.19) abo\re:’
ZE—'xiz - Z.\'l.z
=0
Thus,

Var(ﬂ')=0'2fzw.-2 +Z(Ci '—w,‘)zj

2 1
_o +0?o-w) [ T2 =—
> Zx‘,

;Varbb")wz):(q -w,)’

Since X(c - w.)? > 0 unless ¢, =wforalli, Var( )< Var('), and We conclude thy Bisa
minimum variance or best estimator,

2.7 STATISTICAL INFERENCE IN SLRM

After estimating the Population parameters (aand B) of our regression mode
15 t0 examine statisticy] significance of the estimated coefficjents (@ and g )b
knowiedge of statistica] inference, 12 Examination of Statistica] significance of the estimated

coefficients Specifically requires the knowledge aboyt their sampling distributions, In this
Tegard, it may be poteq that
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B~N {ﬂzi;} (223)

Expression (2.22) states that & has a normal distribution with mean equal to & and

o1 X e .
variance —+———. Similarly, (2.23) states that /3 also follows a normal distribution with
n Lx

. 2
mean equal to fand variance 0’ /Xx  However, these results are useful when the variance
of the disturbance term (0?) is known. Unfortunately, in practice, otis not known and has

to be estimated as

., RSS Y

5o RS _Ze (224)
n—2 n-2

where 07 is the estimate of 02,12

Hypothesis Testing

We formalize the object of testing statistical significance of J (also @) by stating that we

want to test the validity of the null hypothesis (H,)"* that the value of true population

parameter f3 is zero against the alternative hypothesis (H,)"*
the present context, we set our hypotheses as

that it is different from zero. In

H,: B=0
H,: B #0 (under two-tailed test)

However, if we have any prior knowledge about the sign of f (say positive), then the

hypotheses are set as

H: p=0
H,:$>0 (one-tailed test)

13 Note that &° =& is called the standard error of regression. It provides an estimate of standard

deviation of the regression error (or disturbance term) £,

14 In simple language, null hypothesis is what we are going to test.
1S The alternative hypothesis represents our conclusion if the experimental test indicates that the

null hypothesis is false.
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2.10 SOME IMPORTANT RELATIONS IN THE CONTEXT OF SLRM

Relation between Regression Slope and Correlatlpn Coefficient
There is a relation between the regression slope ( /) and correlation coefficient (r) between
X and Y, which is demonstrated as follows.

Xy,
_Zuy VI
XS \/Z—\',’
XXy, Jax/n
- Iy JZyi/n

- S,
=f 3-’- (S, and §| are standard deviations of X, and Y, respectively)

(v, =X,-Xand y, =Y -Y)

Thus, the relation between the regression slope and correlation coefficient is given by

. S
A= rS—’ (2.28)

Relation between F-statistic and r
We know that

TSS = ESS + RSS

TS5S= Y yf

s 2 2 2 ] inyi
ESS= pixy=r Xy, |1 :ﬂfy_z

2

RSS=TSS-ESS= Y y*—r* Xy’ =(1-r")Ty,
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3 The Multiple Linear Regression Model

This chapter extends the d'iscussiun of the |n"cvimm chapter. It is concerned with issues
relevant to multiple "“S“_'s'“““ “““l)'f‘i”' Specilically, we discuss speclfication and assump.
. multiple rcgrc.ssmn model, llS. estimation, goodness of fjt measures, and various
th]cms of inference in the context of multiple regression models, We have added a brief
discussion on the LR, Wald, and LM tests which are nowadays widely applied to handle
3 variety of inference and other problems in multiple regressions, Empirical applications
of these tools and techniques have been explained using data set and EViews software

package-

3.1 DEFINITION
Sometimes the two-variable regression model may appear to be inadequate as one inde-

endent/explanatory variable alone may not adequately explain variation in the dependent
cariable. In other words, it may appear that there are more than one determinants of the
dependent variable. Thus, when we consider more than one determinants or independent
variables, it becomes the case of multiple regression models. For instance, if we hypoth-
esise that monthly consumption expenditure of the people is determined by their income,
age, education, sex, etc., we have to specify a multiple regression model. In brief, a multiple
regression model is the one where two or more independent variables are considered to
lain variation in the dependent variable.'
Obviously, the easiest example of a multiple regression model is where only two indepen-
dent variables or regressors are considered. In this chapter, we consider such a model while
in the appendix to this chapter we present the multiple regression model involving more

than two independent variables.

! Geweke et al. (2008, 610) observed that R. Benini, the Italian statistician, was the first to make
use of the method of multiple regression in economics in the decade beginning 1900. However,
Henry Moore was the first to place the statistical estimation of economic relations at the centre of
Quantitative analysis of economics in the 1910s. Moore is also credited for laying the foundation of
Statistical economics’, the precursor of econometrics.
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MPTIONS
N AND ASSU :
1.2 SNCIFIC‘:“E population regression model involvip t
The three-vark

y variables X, and X is sp lePEn
1 1 l\!/“‘sl"]““‘mr ariables ue d :ui ecified as: dent Vo
independe Pk

er
ahli:
Y|=a+ﬂlxll+ﬁ)_x2|+el Iah\i
Here £ is the stochastic disturbance term and the SUbscript i denoy \
As in the case of two-variable model, we make the following ass mp:s the g & ]
L Lol " 10 s
above multiple regression model. ng tht::quuh
th .
!
(i)  Zeromeanof€;: E(€, \ X, XL.) =0foreachj hy
(i)  Homoskedasticity: Var (€ ) = 62 constant

(iii) Non-autocorrelation: Coy (Ei, Ei) =0wh
(iv) Normality: € is normally distributed.
(v)  Non-stochastic Xs, which implies that the values of X

erei#-:j

repeated samples,

.v&n&bles 3:&
(vi)  Zero covariance between €.and ;

Xvariables, ie,, Cgy (. ) ey
(vii) No exact linear relationship exists between t}e X t’v 1 = Coy (e, x )
correlated. Aliableg, Le_: X: =0,
arg oy
3.3 OLS ESTIMATION
To obtain the OLS estimates of Parameters of the Population regye,
write the corresponding sample regression mode] a5 sression mog 1(3 )1y
1Rty
Yl =0+ ﬁlxn * Bzx +e
(32)
where ¢ represents estimated residual values,

and ¢, Bl

lation parameters @, 3, and B, respectively, As in the

vand B are estimateg of
“least-squares

. LR, ) tWO'Variable m PQPU-

Tes crterion’ to obtain thege estimates, Following this Crite:idd’ We apply the

values of ¢, B,,and B, which minimize ¥ o2 on, we seleqt the
Here ‘

zeiz =2(Yi ~o— BIX‘H == ﬁzxm)z

The ne iti Inimizatj
cessary conditiong of rmimization of ¥ ¢? are

ﬁ_):_ef_zazef _oXe _

3 : —=0
* 0B 9B

Applying these conditions, the following ‘normal equations’ are obtained.

: , (3
EY‘ =n&+ﬂ12X“ +ﬁ22X25
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XY =4y ARY D) X0 By X, X, (3.3b)
LX,Y =aY, X, 4 LXX 0 Lx: (3.3¢)
It is clear that with the given dar, ony, X, and X,, we have to compute (he following
ntities to obtain the values of (e estimates,
qua '

Py }:T” LX"' L'\.?" :‘-'\'n"nl.x;,"..x.\’.,xp.y).‘.xl)., and ZX;,‘
Putting these values in the -\fﬂl't‘l‘hcnli
solutions for values of @, f1, and p,. U

iable multiple regression model as
varis

oned ‘normal equ

ations’ and
sing the

solving, we have
se values, we write the

estimated three-

Y, =a+f X, +4,X,,

An alternative way to compute the estimates is to use the following formulas that can be
d r‘ived by solving the ‘normal equations;
C (w

a= ?—ﬁlxl “ﬂz}?z

(3.4)

lB . Zx“}’i Zx; . sz,}',- lelxzi (35)
l zxf; Zx;; - (leixﬂ)z

A Zx,_',y,. lez, ~ le,-y.' zxnxh‘ (3.6)
ﬁz - lez, Exzz, - (Zx“le.)z

Y,X,, and X, denote sample mean values for the three variables and the lowercase
Here Y, X,, 5
letters denote deviation from these sample means.

I Xlz Zx;i +)_(§ Exlzl _2)_(1)_(2 anxziJ 2 (3.7)
Var(a)=|—+

n Toxy Zaty, ~(Lxx,, )

~

2 CJ'2 -«_3)
. R €
Var(f3)= E)E)-Cam) | Zal-n

[ X : _ o = ___"2 (3.9)
_(fo,)(fo,)—(Zx,,xz,)

Var(ﬁz )=

-

Scanned with CamScanner



fel

phe Mo ATORS s
gsTIM » imators :

oPERTIES oF O'* Jodel, the least-squares estn'n (a » Pryand B)in th
B vane 'nﬁ;;lnuﬁ . st linearand unbiased estimators oF populy,, M
i two UE 16 i _ 0 .
por : )‘ll: i« easy t0 prove these properties. Howevefr, we skip this eXer -para'h.
AR EE ies i Cl
A [‘r:m'idt‘ﬁ proof of BLUE properties in contexto the genery| ]inearmselhtre

i Ve u 4

n A[‘r"n‘ i tlp]
regresuon m(‘d“" :

variable MO e

ODNESS OF FIT

URING GO , -
MEAS dliple regression model, we may be interested to assess

gthem h i e the go,
four estimated model. In other words, our objective is to kngyy dney,
OWweH[h
t

the sample observations.
The goodness of fit of the estimated model in the context of a tWO-Variable g,

derstood interms of the value of P-statistic. To recapitulate, r-statistic provides ; Odel js

proportion of total variation in the dependent variable that is explained by the indmeasure of

explanatory variable of the model. We can extend this concept further to obtay ependeyy,

goodness of fit of the estimated model in the context of estimated multiple re a Measuref

This is done as follows. Eession modg,
In the two-variable model,

3.5 :
After estimatin
or quality offite
estimated line fits

2 _ g‘xiyi)z
LxLy
_Blxy,

Xy,
_ESS

TSS

r

Let us rewrite the above relatio

en n supposing that the variables considered are Y andX;
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Now if we suppose that there are

The above tormula can be extended further by
have more than two cxpl.\n.\lury variables, If we |y
the model, then the R* formula becomes

Adding terms i the nume

rator, when we
ave k number of explanat

ory variables in

RY = B le.)'i +B) Exn)’[ *o +ﬁ1 qu)’.
Ly, e

usefulness of R*-statistic

Ri-statistic (in brief, R?) provides a measure of goodness of fit of th i
regression model to sample data. It also helps to understand the relefr o
variables in the estimated model. The valye of R? lies between 0 anda;.)c
of R is close to 0, the explanatory variables haye not explained much (;ft
the dependent variable of the model and we haye 3 ‘bad fit’ estimated e
words, we have not considered the explanatory variables that are relevan:l t
tion in the dependent variable. On the other hand, when the value of R? js high and ¢l

to 1, we have a ‘good fit’ estimated equation, which explains a large part ofgvariatio: Zel
the dependent variable and the explanatory variables considered in the model are quite
relevant.

Misuse of R*-statistic

In spite of above-mentioned usefulness of the R*-statistic, one must be cautious about its
possible misuses. In particular, it is to be remembered that it is dangerous to play the game

of maximizing the value of R%. Some researchers do this by gradually increasing the number
of explanatory variables in the model. However, in empirical research, quite often we come
across a situation where the value of R? is high but very few of the estimated coefficients are
statistically significant and/or they have expected signs. Therefore, the researchers should
be more concerned about the logical/theoretical relevance of the explanatory variables to
the dependent variable and also their statistical significance. If in this process, a high value
of R*is obtained, well and good. On the other hand, if R? is low, it does not mean that the
model is necessarily bad, particularly when a good number of the estimated coefficients have
expected signs and are statistically significant.

To illustrate the above point further, let us consider an interesting example given by Rao

and Miller (1972, 14-16) which clarifies the difficulty of choosing between two different
models solely on the basis of their computed R*values. Rao and Miller estimated both the
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0 .
 savings functions using the same time se

ricq d
Al Rt
consumption ) The estimated equations were ta ¢

and income (\"].

‘o .
Coneumption function: m

€, =-034+076Y,+ 0.30Y R gq

Savings function:

S, =034 + 0.24Y - 0‘30Y:-| R <
=0.64
1t is found that estimated consumption mode]
dependent variable while the savings model explains 649, of th ,
result, it would be incorrect to conclude that the consumpy. ® Samg Uiay;,
causal relation. The reason for this is as follows, Ption Modg) the blal %
We know that p'(’vid Sofg

explaing 99% o "

R? =1—ES_= i Zef
TSS 2},!2

In the case of consumption model,

e

RI=1-%&%

ch Where (:t ;Cf ._E.

For the savings mode,

QR
Rs =1-="t where « — -
253 €S ‘SI_S-

'N . .
OW, since arginal propeng;

Propensi ty to consume .
R? Salu;:y otl?g;a:: (EA;S);3 EC'I >253 =SR>S R2 (N?;C) 118 greater thay the Marind
© differ. 3o, ; ‘ % as long as MPC # Mps ¢,
CO“S“mption f not be appropriat, ) -em
the estimated Provides 3 bey ,_P ¥ .to conclude that the estist
er-fit estimated equation compared wit

) igher R
Savings model.

eries oy savi
- . in
Onsum'pt_mn_ & (S') has been generated by taking a difference of income 2!
Th.lS 1S Shown b

and say; ¥ the Valueg of est . u
188 models, ;. are 0,76 ::2 ;teic%ﬂiclents forincome variable (Y)) in the consunf™
“, respectively.
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