V s [IVE-GRAPHIC APPROACH
| U

11{1; 0 ponlinear d'fr‘fr;’;"al ef“,'auons Previously discussed (exact
a5t o separable-vari® ec?l.ldt_lo-ns’ and Bernoulli equations) have
lequal'o ;,'mfivt’[)’- That 15, we have in cvcry case sought and found a

ua" h value of 1, tells the specific corresponding value of

, able to find a quantitatj ' -
m‘ Feahlf-" o sot ch ]M% | quantitative solution from a given
" ¢ yet, in such cases, l} may nonetheless be possible to
¢ propertics of ‘the l1n-1c puth-primarily, whether y(t)
e O ctly observing the d_lﬂ"crcnlml ¢quation itself or by analyzing
o ;gcs’ y when quantitative soluuons. are available, moreover, we may still
"""fﬁh fren iques of qualitative analysis if the qualitative aspect of the time
S8 techt Jusive concern.

AUy equdtt
gti® " alitall®

el

g =f(y)

=B

. fpear OF nonlinear in the variable y, we can plot dy/dt against y as in Fig.
ff;“Such 3 geometric representation, feasible whenever dy/dt is a function of y

e is called a phase diagram, and the graph representing the function f, a
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404 1Y N
ime (A differential equanon of this form -y Whick the
phave [1F \ separate argnment of the fun thon | ® lim,
ypear as i ‘ i "
pot appeat , ase line is oy byl
| Ih'truh.il eauation ) Onee |'h“ e line is kn““’ﬂ, iy Compy b iy, "
o cant qualinative information reparding the (i, Path Wity Y
wen " ) —— p— a ) vl "l
jies in the following two general remarks N Y
s .
|
| Anywhere ahove the horizontal nxis (where 4, Jdb ¢ '
aver time and, as far as the y axis is concerped — Miagy )

- Miew
i,

right. By analogous reasoning, any POt below hy 4,
associated with a leftward movement in (he variahle . .
ol dv/dr means that y decreases over timne '
cxp'ili‘l\ why the arrowheads on the illusiry;
drawn as they are. Above the horizontal

4 “l'l i %

LAy
e

"lff';,x "I
Ve phage |

* 1ine

Fitg " e 8
(’. ) ¥

) AX15, Ih(_f arve 4

pointed toward the right—toward the northeys, or v TV e ;
. T ’ Othes, ;

the case may be. The opposite is true below (he Y xia ‘\4} i o | ;
. N f ol ’ i . % | O e = -

are independent of the algebraic Sign of y; even if Phase . ey

is transplanted to the left of the vertical axis, - iine 4 :

lhc dlﬁj(_‘““q of

-

not be affected.
2. An equilibrium level of y—in the interlemporal Sense of 11
can occur only on the horizontal axis, where dy /-dl ;Zrmz
time). To find an equilibrium, therefore, it is nécegxal:.'} () sia "
intersection of the phase line with the y axis * To teq} tf: C’Tl‘\' 10 congg, 3
equilibrium, on the other hand, we should also ch‘cck :dnr g
the initial position of y, the phase line wi] :c-"i?c; e 4
equilibrium position at the said intersection, S . oy

—m

| e

1 Ellwayg

Types of Time Path

On _the basis of the abpve gen-cral remarks, we may observe three diferes; +
of time path from the illustrative phase lines in Fig. 143, .
Phase line 4 has an equilibrium at point v - ve as well x 5
point, the arrowheads cor?sistently leadp:\:zrz\tyhflr’o?rl:[eabﬁll'g y “tg\h e

i, it quibibrium. Thus, Lo
equilibrium can be attained if it happens that y(0) = y_, the more el |
y(0) # y, will result in y being ever-increasing [if y(0) S v, ] or ever-decresat |
}'J(O) <,]- Besides, in this case the deviation of y from ¥, tends to Jrow 2 &
Increasing pace because, as we follow the arrowheads on the phase ‘e
deviate farther from the y axis, thereby encountering ever-increasing S
values of dy /dt as well. The time path y(r) implied by phase line A can (%
be represented by the curves shown in Fig. 14.4a, where y is plotted &
(rather than dy /dr against »). The equilibrium y, is dynamically unsmb.lc', 0=ie

In contrast, phase line B implies a stable equilibrium at .Vh"n )l; ol
equilibrium prevails at once. But the important feature of phase 11"
see this whet “c‘h;).

* HPWCVET. not all intersections represent equilibrium positions. We shall
phase line C in Fig, 14.3,
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vt v(t)
|
J Vo= o
i Sl |
/-' yr _\ B
O oo [
(b)
0 (a) (c)
e 144
0+ the movement along the phase line will guide y toward the level

'nlfy((: iime path (1) Co'rreizofbdmghjtohthls type of phase line should therefore
oflr& T orm <pown in Fig. 14.4b, which is reminiscent of the dynamic market
r|1°‘jd"3 sbove discussion suggcsts that, in general, it is the slope of the phase line

. intersection point which holc'is the key to th_e dynamic stability of equi-
i e ¢ the convergence Of_ the HIS path. A (finite) positive slope, such as at
jjpriu™ nakes for dynamic instability; whereas a (finite) negative slope, such as
lies dynamic stability.

This generalization can help us to dfaw qualitative inferences about given
diﬁﬂemja] equations without even plotting their phase lines. Take the linear
jferentia equation in (14.4), for instance:

G pgy=b o @
i dt
Gince the phase line will obviously have the (constant) slope —a, here assumed

oizero, We May immediately infer (without drawing the line) that
converges Lo
020 = )’(’){ diverges from

= —ay+b

} equilibrium

As we may expect, this result coincides perfectly with what the quantitative
solution of this equation tells us:

b b
)= [y(O) - E]e“” + P [from (14.5")]
We ha‘vc learned that, starting from a nonequilibrium position, the convergence of
?V(')h'ngt?s on the prospect that e~ — 0 as ¢ — oo. This can happen if and only
la>0;ifa <0, then e~ — co as  — oo, and y(f) cannot converge. Thus, our

— e — = —_— e

wnclusion is one and the same, whether it is “arrived at quantitatively or
Qualitatively.,

i }11 remains to discuss phase line C, which, being a closed loop sitting across
clwe"“l(mlal axis, does not qualify as a function but shows instead a relation
®ndy/dt and y.* The interesting new element that emerges in this case is the

) .n'li& tan ance
anse from a second-degree differential equation (dy/d!)2 = f(»).
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496 DYN
esibility of @ pcrindicnlly Ih-lctum‘ing‘lnme path, The way gy
P““J we shall find y fluctuating h(.l\'VLC.n the two valquy at Phy
drnt\fl:\l“ In order 10 generate the periodic ﬂuclumi(m, lhccland I S
l:t‘:\:ldlé the horizontal n3cis in such a manner thyy dy /4y P Muyg, quC;‘
" oe and negative. Besides, at the two intersectiop, Poin ¢ il )
| have an infinite slope; otherwise the intersec; s
b, O Ji neither of which' permils.n continual flow o ar;’(;‘w‘:'l ey
time path y(1) m"cwond".‘g to this looped phase fine is illy, “ads Th
Note that, whenever y(r) hits the upper bound y/ or (e Iowslralcd. :
dy/dt = 0 (local cxtrcma);' but these _values certainly dq, i rer oundy
values of y. In terms of Fig. 14.3, this means that poy all i Presen, 7o W), ™
phase line and the y axis are equilibrium positions, tersecﬁom
In sum, for the study of the dynamic stapj; of ey, 1
convergence of the time path), one has the alternatjye cith ©quiliy;
path itsell or else of simply drawing the inference fr. €ro

e om g pp. . din
illustrate the application of the latter approach wit the Sos]owa B

po.\‘i(i\'t‘
line shoulc

EXERCISE 14.6

1 Plot the phase line for each of the following, and discuss its quatce. .
(a) & _,_q (¢) & _ 4-7 Aellaie mply
d[ ) dt 2 0“52

& b _
0y y=1=3% (4 =9%-1

2 Plot the phase line for each of the following and interpret:

d
(a)j};=(y+l)2—l6 (y 20
o _1 5
b g =9y 20 |
3 Givendy/dt=(y = 3)(y - 5)=y> - 8y + |5

(a) Deduce that there are two possible equilibrium levels of y

other at y = 5. One at y = 3 gyq
(b) Find the sign of i(ﬂ aty =3andy = _

these? dy\dt )4~ Y = 3, respectively. What can you infer frog
ese?

147 SOLOW GROWTH MODEL

T;lhe growth model of Professor Solow™* is purported to show, among other g
that the razor s-edge growth path of the Domar model is primarily a result of e

* dlf
Robert M. Solow, “A Contribution to the Theory of Economic Growth,” Quarter J0"

Economics, February, 1956, pp. 65-94.

Scanned with CamScanner



il qriavs> =-
'T;\-Off'f d vaf
]

L
"
!

R LINEAR DIFFERENTIAL EQUATIONS

ﬂﬂ.\'lz)'g‘q‘? \NT COEFFICIENTS AND CONSTANT TERM

“ (‘ |
alﬂl
ons, let us discuss first the method of solution for the
N rt:: _ 7). The relevant differential equation is then the simple
. a8

| ‘;]-.Lal)"(f) +ayy="b

 ¢d bare all constants. If the term b 1s identically zero, we have a
*~uation, but if b 1s a nonzero constant, the equation is nonhomoge-
';~‘5Lg,'.1155i011 will proceed on the assumption that (15.2) is nonhomoge-
_ g the nonhomogeneous version of (15.2), the solution of the
. version will emerge automatically as a by-product.
;wmecﬁon, we recall a proposition introduced in Sec. 14.1 which is
wible here: If y_ is the complementary function, i.e., the general
wih rbitrary constants) of the reduced equation of (15.2) and if y, is
il integral, i.€., any particular solution (with no arbitrary constants) of
¢ equation (15.2), then y(t) = y, + y, will be the general solu.tion
f:"’"r"lﬂﬁ (quation. As was explained previously, the y, component provides
1}? ;qu;lhbnum value of the variable y in thg intertfamporal sense of th?
"'r;ath;(,ey‘ component reveals, for each point of time, the deviation 0

) from the equilibrium.

L
'

<

"
llay lntegral
:’:(ase{) . . B
g [gonstam coefficients and constant term, the particular integral is
E"a‘“t of d. Since the particular integral can be any solution of (15.2),
o leSty lhal, Satisfies this nonhomogeneous equation, wWe should always
M ’

<
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so that (15.2) in effect becomes a, p = b, with the solug;
desired particular integral is 1on

b
‘ ) - —— (s P 0
(‘5--) .‘,a ﬂ; ( ) ’ )
Since the process of finding the v
rationale for considering that valye a8 AN interye ndiy,
self-evident, Mpory| eqy

Example I Find the particular integral of the equati
' on
() +y () =2y = — 19

The relevant coefficients here art a; = -2 and p =
lar integral is y, = — 10/(-2) =5 = —1o,

What if a, = 0—s0 that th
situation, since the constant solution for Y, fails g

?nfmconstant form ot: solution. Taking the sirrfplesl possi:-(;.r * We myg 'r‘:';r_‘tl
| Since a, = 0, the differential €quation is now Ty, we May ujj -
[ I ’ I=
LY (D) +ay()=b 3
| but if y = kr, which implies y'(¢) =
| ak = b, Th :
| a . This determines the

€ expression b/a, is not

“and y (1)< g, gy

value of k ,
integral 25 b/a,, therety giving

\
Inasmuch as y_is in this Case a noncon i :

. p ‘ Stant function of tipe \
\a moving equilibrium. » We shall gy

Example 2 Find the Yp of the equation
a,=0,a,=1and p =

(8) + y'(1) = =10, Here e hn
= 10. Thus, by (15.3
Y, = —10¢

"), We can write

If it happens that a, is also zero, then the solution form of y = ke will 19
bre

ak down, because the expression bt /a, will now be undefined. We ought, b
to try a solution of the form y = ks2. With a, = a, = 0, the differential equt
now reduces to the extremely simple form

yu( t) _— b

" i lial
and if y = ke, which implies y'(r) = 2kt and y”(r) = 2k, the diffeeat’s

ticular 0t
tion can be written as 2k = b. Thus, we find k = b/2, and the par
gral is

(1537 y = %12 (a, = a, = 0)

i
. . is ggain a mo
l The equilibrium represented by this particular integral 18 36

librium.
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" Find the Yy lt())f lrhc equation ‘1:”( .’) = - (),
’E“"" 0 nl\d ph= =1, ormula (|51 ) 15 ﬂl)Dlicuhl

| @ (’]
s

b

L1
bln'cc the coeflicients are
¢. The desired answer s

(‘omplcmcnmr_v Function
atary function of (15.2) is defined to be (he ge

gcncous) equation neral solution of its

e compleme
ndm‘cd (homo
15.4) y'(1) ay'(1) + a5 =0
NE. DA LA

[§18 why

e stated that the solution of a homogeneous equation will

o the process of solving a complete equation, i always be
Even though W€ have never tackled such an equation before, our experi

the complementary function of the first-order diﬂ'ercntial’ equatign i
s with a useful hint. From the solutions (14.3), (14.3), (14.5), and (154 ?,l)n
s clear that exponential. expressions of the form Ae” figure very pr(,Jml'nenﬂ)-/ in,

e complementary functions of first-order differential equations with constant

ceficients. Then why not try a solution of the form y = Ae" in the second-order

tion, 1007
If we adopt
y(1)=rde”  and y"(t) = r*de”
i the derivatives of y. On the basis of these expressions for y, y'(¢), and y"(¢), the
fifferential equation (15.4) can be transformed into

with
upply

the trial solution y = Ae”, we must also accept

(154) Af.”'(r2 +a,r+ az) =0

of A and r that satisfy (15.4), the trial solution

As long as we choose those values
see to it that r

1= 4¢" should work. This means that we must either let A = 0or
satisfies the equation

15¢) rP+ar+a,=0

Since the value of the (arbitrary) constant A is t0 be definitized by use of the
nitial conditions of the problem, however, we cannot simply set 4 =0 al will.
Therefore, it i essential to look for values of 7 that satisfy (1547

.~ Equation (15.4") is known as the characteristic equation (or auxiliary equa-
IBwn) of the homogeneous equation ( 15.4), or of the complete equation (15.2).
“ause it is a quadratic equation in 7, it yields two roots (SO]UUOHS), fefe"_ ed to

Inth .
“Present context as characteristic roots, a3 follows:*

(155) —a, t Ja} — 4a,

r,r=
bl =
__.2

Theg
J o S
%0 roots bear a simple but interesting relationship
. "Noy ‘ .
Sl ae 1h?1 the quadratic equation (15.4") is in (he normalized form lht. ol equation
. Hurf:ipllhymg formula (15.5) to find the characteristic roots 0f‘a differential €q '
At the characteristic equation is indeed in the pormalized form.

to each other, which

¢ coeflicient of the r2 term
we must first
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can serve as a convenient means of chccking our C‘llculatio ‘
roots is always equal to —a, and their product is n;

ﬂ|Wayq €y
1 . b e m
this statement is straightforward: qual g —of

2

lh‘
-a, + ;/a,2 — 4a,

3 |
¢ Pr ‘IQ
%’W

P e

r] - r2 -

[ 8]

4« L 4
(15.6) | T Vay = da,

4 SR
The values of these two roots are the only va)yeq w
solutiony = Ae”. But lhis means lhat, in cﬁect’ there are ¢ ay ass;
work, namely, wo

ich e
il
y| = Alerll and )’z - Azerzr

where 4, and 4, are two arbitrary constants, anq ,
roots found from (15.5). Since we want only one genery solutj charam,ﬁ‘E
seems to be one too many. Two alternatives are now open 14 ul(?n, how
OT ¥, at random, or (2) combine them in some fashjop, +(0)
The first alternative, though simpler, is unacceptab)e
arbitrary constant in Y1 OT yy, but to qualify as 5 general solutigp of
differential equation, the expression must contain tw, arbitrary ca Secong.
requirement stems from the fact that, in Proceeding from , fun 1? st T
second derivative y”(1), we clion y(r) tg

“lose” two constants durin
g e : g the two
differentiation; therefore, to Tounds of

nial ; revert from a second-order differentiy] equatiop
the primitive function y(t), two constants should be reinstated. Thy leaves 5

only the alternative of combining y, and Y2, S0 as 10 include both constants 4,
and 4,. As it turns out, we can simply take their Sum, y, + y,, as the ge,mi,
solution of (15.4). Let us demonstrate that, if Y1 and y,, respectively, satisfy (154}
then the sum ( »i +»,) will also do so. If ¥\ and y, are indeed solutions of (154)

then by substituting each of these into (15.4), we must find that the following two
equations hold:

1and r, gre the

CVer‘
1CK & 3
P kmhu,]i |

There 5 |,

Y1) +ayi(1) + ayy, = 0
y,' (1) + a,y; (1) + ay, =0
By adding these equations, however, we find that
[y;’(') +}’£’(f)] + a‘&ﬂ(’) +}’é(t)] +ay(y, +n)=0
—

J
d? d Y
";;(yﬁy:) = ntn)

jon (154) #
Thus, like y, or ¥, the sum (y, + ;) satisfies the Cqua:::;rf 15.4) or D¢
Accordingly, the general solution of the homogeneous €q
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janetion of the complete equatiog (182) onn. |
RIS S peneral, e
W ’ \Il ) natt ! \
w X el axanunation ol the Chavacto

St
we (hat far as the values of Pyand ry e
als )

O Tormula (15,5 tndi-
voncerney|, threg

W JERRY T nay SO 1\'.‘"4“"

W e of which may necessitate ~ PORsIDle

B \\ “"‘““ ‘\\‘n“ ‘\\l‘ &\ l\\l\thnl‘!llil\ll l\r (“”' |l““l“
It.\l ' I

- ™

peal Toots) When ay > da,, (e Square

i e and B Will take g CTOOLIR (18,8) 1y ro
w1 the W Toots 7y and ry will take distinet oy vilues, heenuge ll‘|

] . P 3 AR \ . KM h]

el e, but subtracteq from ' tor .. ' o

SRR Loy I thay chse,
SUSALL

Al v \
oA (g
s .

)\: - Pools are \“\\‘li“\.‘t\ ll\k‘ two cxpn“e
e \‘ aendent (neither 18 a multiple of the other
N “ maln a8 Separate entities and provide

War

N

Ml expressions must be
)} consequently, A, and A,
Us With two constants, as

7. '\\‘2
¢ Solve the differential equation
e
S yig)=r= - 10

ocular integral of this equation has already been four

Alrea d o be Y =35, in
1 Letus find the complementary function, Sin

ce the coeflicients of the

P | S O araector et .
_swarca, = 1 and ay = — 2, the characteristic roots are, by (15.5),
-11&;"1’4-8 -1 43
y p W — = = l\ &
N - g |
wdn+n=-1=-a;rnrn=-21=a,) Since the roots are distinct real

woxns the complementary function is . = A,e’ -+ Aye . Therefore, the gen-
= wiution can be written as

o=y + Yy =dAe’ + Aye ¥ 45

o order 1o definitize the constants 4, and A,, there is need now for nwo
*a wnditons. Let these conditions be y(0) = 12 and y(0) = —2. That is,
=0, 1(r) and y'(1) are, respectively, 12 and —2. Setting t = 0 in (15.8), we
o thyt

W=d +4,4+5

Y\“— ek " . 3 M 1 > »
}_3“&‘““‘“8(15.8) with respect to 1 and then setting # = 0 in the derivative, we
| l

Vit =
i ‘“)‘A't’l - 2A2e~2| llnd .‘,'(0) o AI -_ 21"‘1
Ny the 1y

s

. 0 initial conditions, therefore, we must set y(0) =12 and
T4 W

hich results in the following pair of simultaneous equations:
‘{l + -‘l: =1

! .
| 2.{2= -2

A
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i Aped Thus the definite solution of the
e Ay ™
1y solutions <

with SO

. ‘s
pquation

Cny;
\ |

o LI

) (1) = e + 3¢

'R' i 2 i . . .
(15 1 check the validity of this solution by dj
¢

As before, WE

ﬁefem' .
’ 1atjq
Jerivatives of (15.8') are .

~ond -
first and SC‘-‘4 e and  y"(1) = de' + 12
y(r)=4ae"

: i differential €quatio
ituted into the given :
¢ are substitu _ the solution j
e lh|csi(= an identity —10 = 10. rl;hlﬁs initial l(? o
the resu t.f- (15.8') also satisfies both of the initial conditjq
cnsily ven y' '

N along

h
COl'recL AS (15-3'),
ns. Pouey

fficients in the diffe
al roots) When the coe : _
Cas; 12h$eg§a:‘u::’ the square root in (15.5) will vanish, anq
:il::croots tall(e an identical value:
a,
r(=n=n)=-7%

T€ntia] ¢
the twq

4 i
quation E
Charaq;: ‘

Such roots are known as repeated roots, or multiple
If we attempt to write the complementary fun
will in this case collapse into a single expression

(l_lere, double) roots.
cion as y_ SNty the sup |
yo=Ae" + A" = (A4, + 4y)e" = =

leaving us with only one constant. This is not
second-order differential equation back to its primitive function.
out is to find another eligible component term for the sum—5 term
(15.4) and yet which is linearly independent of the term Aqe"
such “collapsing.”

An expression that will satisfy
t has entered into it multiplicativ
independent of the A,e™
constant, 4,. But does 4
then, by the product rul

sufficient tq lead 5 from 5 |

The only way |
Which satisfies
» SO as to preclude

these requirements is 4
ely, this component te

term; thus it will enable us to introduce another
ate” qualify as a solution of (1

54 I wetryy = A" |
€, we can find its first and second derivatives to be
y'(1) = (re + 1)A,e"

Substituling these ex

Pressions of y, y’, and y” into the left side of (154), weet =
the expression '

4fe"". Since the varabe
T is obviously lineary

1 lﬂﬂ
Xt, we have ‘112 =4a, and r = —ﬂ}({:;}h&m,
ishes identically an i 4
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" differential equation
A"j (0t 7
_ 6) =6 and a, = 9; since a|2 =4
@3 the roots will pe

: J- 'cﬂts a &
i o formula (15.5), we have r = 0 /3 m gy * '
+ Thus, in line

e Cordlngs g), the complementary function m

' AC ay be wrj
,,rfj((d_ Aqult in (1 Y be written g
& Y
"th‘w _u ¢ Ag€
A . of the given differential equatiop ;
solution duation is now also readily

] gn¢f4| 0 onstant solution for the particular integral, we pey
Trying cal solution of the complete equation js 8L, = 3.1

y ene
M the gt _
| V:Mf“+Aﬁe”+3
1 K

yitrary constants can again be definitized with two initia] condi

o i mitial conditions are y(0) = 5 and y'(0) = .
; SUPP%bod\]re general solution, we should find y(0) = 5; that is, e
" pthe

=3
redyt .
=2 Next, by differentiating the general solution and then setti
d;ial’:o 4, =L we must have y’(0) = —5. That is, -
A? (1) = —3A3e'3’ — A e + A
-v
)= -6+4= 7

y

o .
4,= 1. Thus we can finally wrte the definite solution of the given

® \Lflds
g0 8
.m:?.e'a' +1e+3
3 complex roots) There remains a third possibility regarding the relative
8 e of the coefficients @, and a5, namely, a? < 4a,. When this eventuality
= formula (15.5) will involve the square root of a negative number, which
-uhe handled before we are properly introduced to the concepts of imaginary
clomplex numbers. For the time being, therefore, we shall be content with the
zadoging of this case and shall leave the full discussion of it to the next two

UM,

IThf (hree cases cited above can be illustrated by the three curves in Fig. 15.1,
iﬂwhjm represents a different version of the quadra.tic function f(r) = r* +
ém;?‘a“ e l?amcd earlier, when such a function is set equal to zero, the
Chd Quadratic equation f(r) = 0, and to solve the latter equation 1S merely
mo“}:ile r0s of the quadratic function.” Graphicailly, this means that the
em;ﬁ“ﬂhon are to be found on the horizontal axis, where f(r) = 0.

g allon of the lowest curve in Fig. 15.1, is such that the curve intersects
i Slgfy lﬁm twice; thus we can find two distinct roots 7, and r,, both of

¢ Quadratic equation f(r) = 0 and both of which, of course, are
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I

Complex ronts

Repealed raal ronts,

Distinct reg| roots,

’.
{
/
|
0

Figure 15.1

real-valued. Thus the lowest curve illustrates Case 1. Turning , _ 3
we note that it meets the horizontal axis only once, 4 - %h?s ‘{‘e il
value of r that can satisfy the equation f(r) = (. The:efore : ;:lter-ls lhcu*
illustrates Case 2. Last, we note that the top curve does not ;neee Midd]a Cne
axis at all, and there is thus no real-valued root 1o the equatg s h%m‘ 3
there exist no real roots in suc () = 0,y

i h a case, there are neverthelegg tw Wﬂ

numbers that can satisfy the equation, as will be showp in the nex se:ﬁ
on, o8

The Dynamic Stability of Equilibrium

3
=

v,

For Cases 1 and 2, the condition for d
depends on the algebraic signs of the characteristic roots.

For Case 1, the complementary function (15.7) consists of the two exnar
tial expressions A4,e"' and Axe™. The coefficients A; and 4, are ambip

constants; their values hinge on the initial conditions of the problem. Thus we
be sure of a dynamically stable equilibrium ( Ye 2 0ast > o), regm@-
the initial conditions happen to be, if ‘and only if the roots r, and r are bk~
negative. We emphasize the word “both” here, because the condition for dynamié
sta%ilitji does not permit even one of the roots to be positive or zero. If r =1'-
r, = =3, for instance, it might appear at first_glance that the "
larger in absolute value, can outweigh the first. In actuality, hOjYE‘{%r':v!itn e
positive Toot that' must eventually dominate, because as ¢ increasts, ¢ s
increasingly larger, but e~ 5 will steadily dwindle away. - 159) 8 A

For Case 2, with repeated roots, the complementary function gssi'OH fe"t FOT
not only the familiar e expression, but also a multiplicative expr s

itions may b& 1t
the former term to approach zero whatever the initial condit

ynamic stability of equilibriuy
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HIGHER-ORDER DIFFERENTIAL EQUATIONS 511

jave r < 0. But would that also ensure the vanishing

..t to have l = -
p u_,,cu»“-‘--l—l;é cxpression fe ' (or, more generally, t*e”") possesses the
L ath as does e (r # 0). Thus the condition r — 0 is

) ( m : . S ——
™ N‘" N n;pc Ol;‘tquﬂicicﬂ[ for the enure Comple_men_tary function to ap-
B g a dynamically stable intertemporal equilibrium.

Jﬂ‘{{ 'I“:t:‘-‘?‘?.ﬁr-:’ Y I R
WLy
""“.:hﬂ“)"’
™
5.1 i
}"\' h equation:
_ . tegral of each €q E0n; ’
dmtpﬂuclzl(::;fsiﬁz (d) y ((!))-I—IZiy({)— .
Fln " — 2].' - (e) _V” r -
Il"] ‘."(r] +_I‘}(r) :
B+~ i h equation:
o) function of eac 'eq 3
( cﬂmplcmeﬂtary:: 12 (C) y ’(f) . 2y (f) +y =3

o0 ¢ i) — 4
:F“‘d.. +3y'(1) Y d) v'(t) + 8y’(1) + 16y =0
N]_,.“g;wy,(rﬁ sy =10 (d) y"(1) + 8y y

0 solution of each diﬂ'erential_ ?quation in the pre(’:eding problem, and

. Figd € '5"3”;3 solution with the initial conditions y(0) = 4 and y’(0) = 2.

520 gefinitize oral equilibriums found in the preceding problem dynamically stable?
atertem - o

s Are e 1216 definite solution in Example 5 indeed (a) satisfies the two initial

¢ Verify thﬂ‘dL:’;) has first and second derivatives that conform to the given differential

nﬂdjljoﬂs an

ﬂ;z:ihat a5 1 — 00, the limit of te” is zero if r < 0, but is infinite if r > 0.

b ’ _
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1 Example of Solution
Lzt us find the solution of the differential equation
(1) +2y'(r) + 17y = 34

sith the initial conditions y(0) = 3 and y(0) = 11.

Simce a, = 2, a, = 17, - . _
sl f0 ble 2 and b = 34, we can immediately find the particular

h=T =73 =2 [bY(IS-B)]

MG . .
DOI]rf:over since a? = 4 < 4a, = 68, the characteristic roots will be the pair of
Jugate complex numbers (h + vi), where

2
h“‘ia,=—1 and \/— ﬁ_‘l

HEnce '
0y (15.24), the complementary function is
Je=et (4 :
50841 + A sin4t)
Mbip;
8 ). and Y, the general solution can be expressed as

}'(f) = E_’(

Ascos4r + Agsindr) + 2
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amMn and A, we utilize the two |

| oh M ts Ay : Nitig)
* efiniti?€ - m::,‘:‘ngcnvml solution, we find thyy 1l Cong
To def ;=00 9
S n0) 12
pirst, bY ¢ s 1 A ) |
N (4 ) [cosO = 15 wing - 0]

4!(\)"’“'4*‘ '
(A« = "(m ~ ), we can thuy R[H?clfy /l..

onditi ;
i | solution with respect 1o 1 using 1he

pr""ll(;'

fl‘:ﬁi""‘"w ! las (15.17) and (A 1S) “,Jl(‘“.c hearing in mind . ('; N
dl‘”‘"'.' r]in:.“ﬁl 1o find y'(1) and then y'(0): ERUET
[Frercite 8.2- | osdr + Asindr) +oe '[/15('-43in4’ L " _

yn=-°¢ (Aye08 ‘ ) 4":,‘m4lltj‘;
S ( . . :
- |hn.(m o~ (4000 + Asin0) + (—4Asin0 + 4A,_cn-:0)

Y i v

Lo (A 0) +(0+AAg) = A~ A,

‘ initial condition y'(0) =11, and in view (,, 4

By the second ni . - =1
hecomes clear that Ag = 3.* The definite solution is, therefore, i

(15.29) y(1) = e '(cosdt + 3sindr) + 2

As before, the y, component (= 2) can be interpreted ,
equilibrium level of y, whereas the y, component represents
equilibrium. Because of the presence of circular functions i
(15.25) may be expected to exhibit a fluctuating pattern, Byt
will it involve?

S the imen 2
the deviatign g
n y(-) lhe hnk yals
What specific g

The Time Path

We are familiar with the paths of a simple sine or cosine
Fig. 15.4. Now we must study the paths of certain variant

sine and cosine functions so that we can inte
function (1 5.24')

funclion, as shoy €8
s and combinatjg ,
fpret, in general, the complemepay

y. = €"(Ascos vt + Agsin ut)

and, in particular, the Y. component of (15.25). bro
Let us first examine the term (Ascos ot). By itself, the expression (cos ) |

~ circular function of (vr), with period 27 (= 6.2832) and amplitude 1. The peri
gf 27 means that the graph will repeat its configuration every time that \J
increases by 2. When ¢ alone is taken as the independent variable, howeith
fepetition will occur every time ¢ increases by 27 /v, so that with reference €
I—as is appropriate in dynamic economic analysis—we shall consider the p
of (cos vr) 1o be 2710, (The amplitude, however, remains at 1.) Now, ¥
multiplicative constant A 5 is attached to (cos vr), it causes the range of e

. ‘ ¢ inclu %
_ " Note that, here, Ag indeed turns out to be a real number, even though we hav i
'maginary number i its definition.
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_Thus the amplitude now

X 5 o In short, (4 becomes A, though the
(o 4y s con A B l’ sCos vt ) is a cosine function of 1,
l jmplitude As- BY the same token, (Asinvr) is a sine
/v and amplitude A.

peqods U?C sum (Agcos of + Agsin ut)' will also
ime ¢ increases by 2« /v, To show this more
en values of A5 and 4, we can always find two

— A(cos vrcos€ — sin vt sin )

— Acos(vt + e) [by (15.16)]

tion of ¢, with amplitude 4 and period 27 /v,

cosine func
ses by 27/v, (vf + €) will increase by 2, which

58 M. that ¢ Incred
on the cosine curve.
ly of the expression (Ascos vt + Agsin vr), the implica-

: )‘chave peen that the time path of y would be a never-ending, constant-

d the equilibrium value of y, as represented by ), But
tiplicative term ¢ to consider. This latter term is of
see, it holds the key to the question of whether

jctuation aroun
cl alSO lhe mu1

i,
15‘;; - _for, as W€ shall
o )
i path will converge. . ' ' .
ht will increase continually as ¢ 1NCreases. This will

>0, the value of &%
the amplitude of (A0S pt + Agsin or) and cause

s mgnifying effect 0 pLtuce = : :
e greAter deviations from the equilibrium 10 each successive cycle. AS il-
wraied in Fig. 15.6a, the time path will in this case€ be characterized by
oive fuctuation. 1f 1 = 0, on the other hand, then e = 1, and the comple-
ey function will simply be (A4scos vt ¥ Agsinor), which has been shown to
biea constant amplitude. In this second case, each cycle will display 2 uniform

uiem of deviation from the equilibrium as illustrated by the time path in Fig.
1. This is a time p}@ﬁwiltwgi[q_m’ Aluctuation. Last, if B <0, the term € " will

minully decrease as  increases, and ez_i_ch,s_uCC_cS§iVe_,CyC_13 will have a smaller
' ipple dies

ﬁ}hwdc lhgl.'l‘ ‘l‘he prgcgd_l_[_lg one, much as thc\i’ayaa 1 -down. This case
fmcmf:-rmd in Fig. 15.6c, where the time ‘path_is,,char.actcrth':d by..damped
“]d"’"-lThe solution in (15.25), with h = -1, exemplifies this last case. It
lime paxh.c' ear that only the case of damped fluctuation can producg a convergent
/inthe other two cases, the time path is nonconvergent 0t divergent.*

] 1 - .
‘*n:u:)lilhme diagrams of Fig. 15.6, the intertemporal equilibrium 15 assumed 10
e ary. I it is a moving one, the three types of time path depicted will still

librium generally plots as a curve

e argyunq ;
ound it, but since a moving €qul
angeably, although the latter is

Ll
We ¢
Yyl
onconvergence.

|
g W the tw .
oy ¢ two words nonconvergent and divergen! interch

tppli
cable to the explosive than to the uniform variety of B
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— —_Equilibrium
level

o

Figure 15.6

rather than a horizontal straight line, the flucty

! _ ation will take o {fe
say, a series of business cycles around a secular

Nature of
trend. ‘

The Dynamic Stability of Equilibrium

The concept of convergence of the time

the concept of dynamic stability of the intertemporal equilibrium of that vatk
Specifically, the equilibrium is dynamically stable if, and only if, the time pahi
convergent. The condition for convergence of the y(t) path, nﬁme]Yqu(F'g'

15.6¢), is therefore also the condition for dynamic stability of the quilbsm
of y. e e e ~

path of a variable is inextricably tied

o

1 B LY ﬂ[e[ﬂ]l
You will recall that, for Cases 1 and 2 where the characteristic 10015 ¥

st roo
the condition for dynamic stability of equilibrium is that every charzz";;s::ee
be negative. In the present case (Case 3), with complex roots, 1hcc:f (he conp
to be more specialized; it stipulates only that the real palrt (alhl) e 55 yl
roots (h + vi) be negative. However, it is possible to unify
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HIGHER-ORDER DIFFERENTIAL EQUATIONS 529 ‘ | "-\

, ingly different condmolns nto a single, generally applicable
i s real root“r as a complex root whose imaginary part is zero
condition the real part of every characteristic root be

becomes applicable to all three cases ang emerges as the only

g 153
the general solution, and the definite solution of each of the

L and 0 ¢
5,\"»-*“1'[1&- - 8y = 0; y(0) = 3,y (0)=7
ll"l”""-",(” sy =200 = 24,'(0) =4
3‘4“?‘;(;)4' 4y = 12; y(0) = 2, y'(0) = 2
) }_,':.f(,w 10y = 5; y(0) = 6, y'(0) = 83 -

£|'(”" ’ -
{ l‘ll)’:g}, = 3,_}r(0) =1,y (0) =3

| - 12y + 20y = 40y @) =4,y(0) =5 r
) B . . . ; .

f the above SIX differential equations yield time paths with (a) damped

rm fluctuation; (¢) explosive fluctuation?

I
\

* Fiuch © :
caton; (b) unifo
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Troman UYL negative. TI=uonym 15 en_bﬂllve,l |

n
Sureq Whe;h&

with init.ial con.ditions P0) =6 and P'(0) = 4. Assumj
every point of time, find the time path P(7), Mg mare Clearapg

In this example, the parameter values are

Since n is positive, our previous discussion sy
and that the two (real) roots ry and r, will take
parameter values into (15.28) indeed confirms

m= —¢4 nh=]

BEESts that only Cage | Can ap

Opposite signs, Substitution of e
this, for

1
rn =54+ V16 +48) = %(4i8)=6,—2

The general solution is, then, by (15.29),
P(t) =A% + Aye 2 + 4
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HIGHER-ORDER DIFFERENTIAL EQUATIONS 533 | %

ns into account, moreover, we find that Ay = Ay = |
L

. conditio

ﬁ"l:cﬁ"“c et
\ . Hile!
F.I"f) f’* e o0t Ty = 6, the intertemporal equilibrium (P, =4) is
W os!t
» of l:ﬂslablf:- .« found by use of formulas (15.28) and (15.29). Alterna-
|ﬂ ‘1115':'1]1y ! olt ml'lr“-c (he given demand and supply functions 1o obtain (he

f Ve s i

J‘"J i "'b.in ﬁr‘ft a

\v_fl" gation "

n“nnl‘a 12f = P =

) ‘r,, . cqualion as a schth case of (152)
his ¢
w]fc
il he demand and supply functions
/, given'! i

t 2P - 2P~ F )

1\’40’

b - 3P

0" 1 PO = 1, find P(¢) on the assumption that the market is

_]2an

2 P07 . : :
'\:\sﬂf‘* - meters m and n are both negative. .Ac_cordmg to our previous
’hHerc_ f;;;n. therefore, the intertemporal equilibrium should be dynami-

ol dlsﬂ; 6nd the specific solution, we may first equate Q, and Q, to obtain
0

ysab &ﬁal equalion (after multiplying through by —1)
_, gffere®
F"+2P'+ SP = 45

temporal equilibrium is given by the particular integral
e 01EF

45
_r=9
h=3

£ the characteristic equation of the differential equation,

f+2r+5=10

s¢fnd that the roots are complex:
1 1
'l-’2=5(‘2 +V4-20) = -2—(—2 +4i)=—1+2i
M means that h = — 1 and v = 2, so the general solution 1s

At)= e Ay005 21 + Asin2t) + 9

10 definit; . .
iy |, gellle the arbitrary constants 45 and A4, we set ¢ = 0 in the general

P(0) < H0
) e(Ascoso+AbsinO)+9=A5+9 [cos0 = 1; sin0 = 0]

.
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534 DYNAMIC ANALYSIS

Moreover, by differentiating the general solution ang then
SCttin
81

that

P'(t) = —e "(Aqcos 2t + Aasin2{)+e_,(‘_2/‘ - Weﬁhd
N2y .
[Prodycy , 24,40, y

ul 8

1(0) = —e?(A5c080 + Asin0) + 0 €anq cha: %) {
and  P(0) = T ‘ ¢ (=24sing + 3 B "ulg Vd
= — (A5 -+ 0) + (0+2A6)= ._A5+2A (,C()SO) |
6 .
Thus. by virtue of the initial conditions P(0) = 12 anq P/(0) - 4
and 4, = 2. Consequently, the definite solution is = Liwe ha‘/e,, wz'
S*t} ﬂd

p(t) = e (3cos2t + 2sin2t) + 9

This time path is obviously one with periodic fluctuatjop.

2o /v = T That is, _there is a corr}pl_cte .cycle eVery time that’, he Periog - ‘lj)
o= 3.14159.... In view of the multiplicative term e ', the fluctyar: m%aseg 1 i
The time path, which starts_ from the _initial price P(0) = 1 jc:g)n 18 dap, :
intertemporal equilibrium price P, = 9 in a cyclical fashion. T TVerges | he ¢
P
#
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