§ 2.8. CAUCHY SEQUENCE : CAUCHY'S PRINCIPLE OF CONVERGENCE

The following theorem is extremely useful to determine convergence or otherwise of a sequence.

Theorem 2.8.1: A necessary and sufficient condition for the convergence of a sequence $\{x_n\}_n$ is that for a preassigned ε (>0) there exists a positive integer m such that.

 $|x_{n+p} - x_n| < \varepsilon \quad \forall n \ge m$ and for integral values of $p \ge 1$. (C.H., 1992)

Proof. The condition is necessary.

 \therefore Let $\{x_n\}_n$ be convergent to the limit l. Therefore, for a preassigned positive ε it is possible to find a positive integer m such that

$$|x_n - l| < \frac{\varepsilon}{2} \qquad \forall n \ge m.$$

Now if $p \ge 1$, $n + p > n \ge m$ and so

$$|x_{n+p} - l| < \frac{\varepsilon}{2}$$
 $\forall n \ge m \text{ and } p \ge 1.$

Sufficiency: We show that under the condition given $\{x_n\}_n$ is bounded and converges to a limit.

Let us choose $\varepsilon = 1$ and n = m'. Then from the given condition,

$$|x_{m'+p} - x_{m'}| < 1 \ \forall \ p \ge 1$$

i.e.,
$$x_{m'} - 1 < x_{m' + p} < x_{m'} + 1 \quad \forall p \ge 1.$$

Let
$$g = \min (x_1, x_2, ..., x_{m'}, x_{m'} - 1)$$

$$G = \max (x_1, x_2, \dots x_{m'}, x_{m'} + 1)$$

Then $g \le x_n \le G \ \forall \ n$ proves that $\{x_n\}_n$ is bounded. Therefore, by theorem 2.6.1 $\{x_n\}_n$ has a limit point, say, l.

We shall now show that $\lim x_n = l$.

By the given condition, for ε (>0) there exists a positive integer m such that

$$|x_{n+p} - x_n| < \frac{\varepsilon}{3}$$
 $\forall n \ge m \text{ and } p \ge 1.$

$$\therefore |x_{m+p} - x_m| < \frac{\varepsilon}{3} \quad \text{for } p \ge 1 \text{ (take } n = m) \qquad \dots (1)$$

Since l is a limit point there exists a positive integer M such that for M > m

$$|x_{\mathsf{M}} - l| < \frac{\varepsilon}{3} \qquad \dots (2)$$

Again since M > m.

$$|x_{\mathsf{M}} - x_{\mathsf{m}}| < \frac{\varepsilon}{3}$$
 ... (3)

$$\therefore |x_n - l| < \varepsilon \quad \forall n \ge m. \quad \text{or, } \{x_n\}_n \text{ converges to } l.$$

Example 2.8.1. The sequence
$$\{x_n\}_n$$
 where $x_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$ is not convergent. (C.H., 2004)

Solution: We prove by contradiction. If possible, let $\{x_n\}_n$ be convergent, then for $\in = \frac{1}{2}$ it would be possible to find a positive integer M such that

$$|x_m - x_n| < \frac{1}{2} \quad \forall m, n \ge M.$$

For m = 2n, we would get

$$|x_{2n} - x_n| < \frac{1}{2} \quad \forall \ n \ge M$$
 ... (1)

Softerion: Let m > n where m and a are p since int

Now
$$\left| \begin{array}{c} x_{2n} - x_n \\ \end{array} \right| = \left| \begin{array}{c} \frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{2n} \\ \end{array} \right| = \frac{1}{2n} + \frac{1}{2n} = \frac{1}{2n}$$

Now for $r = 1, 2, \dots n$.

$$\frac{1}{n+r} \ge \frac{1}{2n} \qquad \text{for } r = 1, 2, \dots n$$

$$\therefore |x_{2n} - x_n| = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} > n \cdot \frac{1}{2n} = \frac{1}{2}$$

which contradicts (1).

- .. Our assumption is not correct.
- $\therefore \{x_n\}_n$ is not convergent.

Example 2.8.2. The sequence $\{y_n\}_n$ where $y_n = 1 + \frac{1}{2!} + \dots + \frac{1}{n!}$ is convergent.

Solution: We know $n! = 1, 2, 3 \dots n > 2.2 \dots 2 = 2^{n-1}$ $\therefore \frac{1}{n!} < \frac{1}{2^{n-1}}.$

$$\therefore \quad \frac{1}{n!} < \frac{1}{2^{n-1}}$$

$$|y_{m} - y_{n}| = \frac{1}{(n+1)!} + \frac{1}{(n+2)!} + \dots + \frac{1}{m!}.$$

$$< \frac{1}{2^{n}} + \frac{1}{2^{n+1}} + \dots + \frac{1}{2^{m-1}} = \frac{1}{2^{n}} \left(1 + \frac{1}{2} + \frac{1}{2^{2}} + \dots + \frac{1}{2^{m-n-1}} \right)$$

$$1 - \left(\frac{1}{2} \right)^{m-n}$$

$$=\frac{1}{2^n}\frac{1-\left(\frac{1}{2}\right)^m}{1-\frac{1}{2}} < \frac{2}{2^n} = \frac{1}{2^{n-1}}.$$

Now
$$|y_m - y_n| < \varepsilon$$
 if $\frac{1}{2^{n-1}} < \varepsilon$

i.e., if
$$2^{n-1} > \frac{1}{\varepsilon}$$
 or, if $(n-1)\log 2 > \log \frac{1}{\varepsilon}$ or, $n > 1 + \frac{\log \frac{1}{\varepsilon}}{\log 2}$

We choose
$$n_0 = \left[1 + \frac{\log \frac{1}{\mathcal{E}}}{\log 2}\right] + 1.$$

 \therefore For given any ε (>0) it is possible to find n_0 such that

$$|y_m - y_n| < \varepsilon$$
 for $m, n > n_0$.

.. By Cauchy's condition $\{y_n\}_n$ is convergent.

Definition (Cauchy Sequence): A real sequence $\{x_n\}_n$ is said to be a Cauchy Sequence if for every ε (> 0) there exists a positive integer m such that $|x_p - x_q| < \varepsilon$ for all p, q > m. (C.H., 1997, 2001)

Example 2.8.3.
$$\left\{\frac{1}{n+1}\right\}_n$$
 is a Cauchy sequence.

Solution: Let m > n where m and n are positive integers.

Then
$$\left| \frac{1}{m+1} - \frac{1}{n+1} \right| = \frac{1}{n+1} \left(1 - \frac{n+1}{m+1} \right) < \frac{1}{n+1} < \frac{1}{n} < \varepsilon \text{ if } n > \frac{1}{\varepsilon}.$$

We choose
$$n_0 = \left[\frac{1}{\varepsilon}\right] + 1$$
.

Then
$$\left|\frac{1}{m+1} - \frac{1}{n+1}\right| < \varepsilon \text{ if } n > n_0 \text{ and } m > n.$$

Thus
$$\left\{\frac{1}{n+1}\right\}_n$$
 is a Cauchy sequence.

Example 2.8.4.
$$\{(-1)^n\}_n$$
 is not a Cauchy sequence.

Solution: Let
$$U_n = (-1)^n$$

Then
$$U_n = -1$$
 if n is odd
= 1 if n is even.

Let us choose
$$\varepsilon = \frac{1}{2}$$
, m an even integer and n an odd integer.

design and the statement

Then
$$|U_m - U_n| = 2 < \varepsilon$$

 \therefore No positive integer n_0 can be found such that

$$| U_m - U_n | < \frac{1}{2} \text{ for } n, m > n_0$$

Example 2.8.5.
$$\left\{\frac{n}{n+1}\right\}_n$$
 is a Cauchy sequence. (C.H., 2001)

Solution: Let $x_n = \frac{n}{n+1}$, Then for m > n

Now
$$|x_m - x_n| = \left| \frac{m}{m+1} - \frac{n}{n+1} \right| = \frac{m-n}{(m+1)(n+1)}$$

= $\frac{1}{n+1} \left(1 - \frac{n+1}{m+1} \right) < \frac{1}{n+1} < \frac{1}{n} < \varepsilon \text{ if } n > \frac{1}{\varepsilon}$

We choose
$$n_0 = \left[\frac{1}{\varepsilon}\right] + 1$$

Then for $m > n > n_0$, $|x_m - x_n| < \varepsilon$ holds for any preassigned ε (> 0)

$$\therefore \left\{ \frac{n}{n+1} \right\}_n \text{ is a Cauchy sequence.}$$

Example 2.8.6. Show that $\{2^n\}_n$ is not a Cauchy sequence. (C.H., 2002)

Solution: Let $U_n = 2^n$ and we choose $\varepsilon = 1$. For m > n

 $|U_m - U_n| = |2^m - 2^n| = 2^n(2^{m-n} - 1) > 2$ and can never be made less than arbitrary positive ε , in whatever way we choose $m > n > n_0$ where n_0 is a positive integer.

 $\therefore \{2^n\}_n$ is not a Cauchy sequence.

Example 2.8.7. Prove or disprove : every bounded sequence is a Cauchy sequence. (C.H., 2003)

Solution: The statement is not true. We have seen in Ex. 2.8.4. above that $\{(-1)^n\}_n$ is not a Cauchy sequence.

But
$$-1 \le x_n \le 1 \ \forall n \in \mathbb{N}$$
, where $x_n = (-1)^n$.

Theorem 2.8.2: Every Cauchy sequence is convergent.

Proof. Let $\{U_n\}_n$ be a Cauchy sequence.

By definition, for $\varepsilon = 1$, there exists a positive integer N_0 such that $|U_m - U_n| < 1$ for $m, n \ge N_0$, where m and n are integers.

For
$$n = N_0$$
 we have, $|U_m - U_{N_0}| < 1$. for $m \ge N_0$.

$$U_{N_0} - 1 < U_m < U_{N_0} + 1$$
 for all $m \ge N_0$.

Let
$$k = min\{U_1, U_2, ..., U_{N_0-1}, U_{N_0} - 1\}$$

and
$$K = \max\{U_1, U_2, \dots U_{N_0-1}, U_{N_0} + 1\}$$

Then, $k < U_n < K \quad \forall n \in \mathbb{N}$. $\therefore \{U_n\}_n$ is bounded.

(This shows that every Cauchy sequence is bounded.)

By theorem 2.6.1, $\{U_n\}_n$ has a limit point, say l.

By the given condition, for any preassigned ε (> 0), there exists a positive integer m₀ such that

$$|U_m - U_n| < \frac{\varepsilon}{3} \quad \text{for } m, \ n \ge m_0$$
or,
$$|U_m - U_{m_0}| < \frac{\varepsilon}{3} \quad \text{for } m \ge m_0$$
... (1)

Since l is a limit point, there exists a positive integer $q > m_0$ such that

$$|U_q - l| < \frac{\varepsilon}{3} \qquad \dots (2)$$

Again since $q > m_0$ by (1)

$$|U_q - U_{m_0}| < \frac{\varepsilon}{3} \quad \text{for } (3)$$

Now
$$|U_m - l| = |U_m - U_{m_0} + U_{m_0} - U_q + U_q - l|$$

$$\leq |U_m - U_{m_0}| + |U_q - U_{m_0}| + |U_q - l|$$

$$\leq \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon \quad \forall m \geq m_0.$$
This shows that Lt $U_m = l \text{ or } (U_m)$

This shows that Lt $U_m = l$ or, $\{U_n\}_n$ is convergent.

Since a convergent sequence has a unique limit, $\{U_n\}_n$ being a Cauchy sequence converges to l.

Theorem 2.8.3: Every Convergent sequence is a Cauchy sequence.

Proof. Let $\{x_n\}_n$ be a sequence converging to l.

: For a given ε (> 0), there exists a positive integer M such that

$$|x_n - l| < \frac{\varepsilon}{2} \ \forall \ n > M$$

Hy definition, and EN IEM

the miss of the whore makes is at heregist

Let us choose m > M, then

$$|x_m - l| < \frac{\varepsilon}{2}$$

Now
$$|x_m - x_n| = |x_m - l + l - x_n| \le |x_m - l| + |x_n - l| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

a resultant from makes of Professor 1 I make Assort

when m, n > M

 $\therefore \{x_n\}_n$ is a Cauchy sequence.

Example 2.8.8. Prove that
$$\{x_n\}_n$$
 where $x_n = \sum_{r=0}^n \frac{1}{r!}$ is a Cauchy sequence.

Solution: In Ex. 2.8.2, we have seen that the sequence $\{x_n\}_n$ where

 $x_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \cdots + \frac{1}{n!}$ is a convergent sequence. By above Theorem every convergent sequence is a Cauchy sequence

 $\therefore \{x_n\}_n$ is a Cauchy sequence.

Example 2.8.9. Prove that the sequence $\{u_n\}_n$ where

$$u_n = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + + (-1)^{n-1} \frac{1}{n}$$
 is a convergent sequence. (C.H., 1992)

Solution: We shall show that the sequence $\{u_n\}_n$ is a Cauchy sequence and hence it is convergent.

Here for q > p (p and q are integers).

$$|u_{q} - u_{p}| = \left| (-1)^{p} \frac{1}{p+1} + (-1)^{p+1} \frac{1}{p+2} + \dots + (-1)^{q-1} \frac{1}{q} \right|$$

$$= \frac{1}{p+1} - \left(\frac{1}{p+2} - \frac{1}{p+3} \right) - \left(\frac{1}{p+4} - \frac{1}{p+5} \right) \dots$$

$$< \frac{1}{p+1} \text{ (each term within bracket is positive)}$$

$$\therefore |u_q - u_p| < \frac{1}{p+1} < \varepsilon \text{ if } p > n_0 \text{ where } n_0 \text{ is integral part of } \left(\frac{1}{\varepsilon} - 1\right).$$

- $|u_m u_n| < \varepsilon$ if $m, n > n_0$. We see that Left are choose $I_n = \{0, \frac{1}{n}\}$ such that
- $\therefore \{u_n\}_n$ is a Cauchy sequence.

Definition: The sequence $\{I_n\}_n$ of closed intervals such that $I_n \supset I_{n+1}$ is called a sequence of nested intervals.

We now prove the following important theorem on Nested intervals.

Theorem 2.8.4: If $(I_n)_n$ be a sequence of non-empty closed intervals such that $I_n \supset I_{n+1}$, then $\bigcap_{n \in \mathbb{N}} I_n$ contains at least one point ξ . If further $\lim_{n\to\infty} |I_n| = 0$, then ξ is unique. ($|I_n|$ denotes the length of I_n) (C.H., 1997, 2003)

Proof. Let $I_1 = [a_1, b_1]$, $I_2 = [a_2, b_2]$ and so on $I_n = [a_n, b_n]$ etc.

Since $I_n \supset I_{n+1}$, we have

$$a_1 \le a_2 \le \dots \le a_n \le \dots < b_{n+1} \le b_n \le \dots \le b_1.$$

We thus get two sequences of real numbers $\{a_n\}_n$ and $\{b_n\}_n$ of which

- (i) $\{a_n\}_n$ is a monotone increasing sequence and bounded above by b_1 (in fact by each b_n).
- (ii) $\{b_n\}_n$ is a monotone decreasing sequence and bounded below by a_1 (in fact by each a_n). Hence both the sequences $\{a_n\}_n$ and $\{b_n\}_n$ are convergent.

Let
$$\lim_{n\to\infty} a_n = x$$
 and $\lim_{n\to\infty} b_n = y$.

 $x = \text{l.u.b. of } \{a_i, i \in \mathbb{N}\}$ and let, if possible $b_m < x$ for some $m \in \mathbb{N}$.

Then $b_m < a_r < x \Rightarrow b_k \le b_m < a_r \le a_k$ where $\max(m, r) = k$ which is impossible as $[a_k, b_k]$ is an interval.

 $\therefore x \le b_n \ \forall \ n \in \mathbb{N}.$ $\therefore \bigcap_{n \in \mathbb{N}} I_n$ contains at least one point.

Now $|I_n| = b_n - a_n$ and $\lim_{n \to \infty} |I_n| = 0$ implies that $\lim_{n \to \infty} (b_n - a_n) = 0$

or,
$$x - y = 0$$
, or, $x = y$.

Hence $a_n \le x \le b_n$. $\therefore x \in I_n \ \forall \ n \in \mathbb{N}$

If possible let x_1 and x_2 ($x_1 < x_2$) be two different points such that

$$x_1 \in \bigcap_{n \in \mathbb{N}} I_n \text{ and } x_2 \in \bigcap_{n \in \mathbb{N}} I_n.$$
 $\therefore a_n \le x_1 < x_2 \le b_n$

 $\therefore b_n - a_n \ge x_2 - x_1 \ \forall n$ which contradicts that $(b_n - a_n) \to 0$ as $n \to \infty$

 $\therefore x_1$ is not different from x_2

Hence $\bigcap_{n \in \mathbb{N}} I_n$ is a unique point.

Note: The theorem may fail when the intervals are not closed. (C.H., 1997, 2003)

Let us choose $I_n = \left(0, \frac{1}{n}\right)$ such that $|I_n| = \frac{1}{n}$ which tends to 0 as n tends to infinity.

of another properties of comments associated with

Further $I_n \supset I_{n+1}$. But we see that there is no point ξ such that $\xi \in \bigcap_{n \in \mathbb{N}} I_n$. melosed sessions to approximate a fundament

In fact,
$$\bigcap_{n \in \mathbb{N}} I_n = \phi$$
.

1. Show that the sequence $\{a_n\}_n$ where

$$a_n = \frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \dots + \frac{1}{(2n-1)(2n+1)}$$
 is monotone increasing and bounded.

Solution:
$$a_n = \frac{1}{2} \left(1 - \frac{1}{3} \right) + \frac{1}{2} \left(\frac{1}{3} - \frac{1}{5} \right) + \dots + \frac{1}{2} \left(\frac{1}{2n-1} - \frac{1}{2n+1} \right)$$
$$= \frac{1}{2} \left(1 - \frac{1}{2n+1} \right) = \frac{n}{2n+1}.$$

$$a_{n+1} = \frac{n+1}{2n+3}$$
 $\therefore a_{n+1} - a_n = \frac{n+1}{2n+3} - \frac{n}{2n+1} = \frac{1}{(2n+1)(2n+3)} > 0.$

$$a_{n+1} > a_n \quad \forall n \in \mathbb{N}$$
 $a_n : \{a_n\}_n$ is monotone increasing.

Now,
$$0 < \frac{n}{2n+1} < 1$$
 :: $\{a_n\}_n$ is bounded.

2. Show that the sequence $\{a_n\}_n$ where

$$a_n = \frac{1}{n} \cos \frac{n \pi}{2}$$
 is convergent.

Solution: Here
$$|a_n - 0| = \left| \frac{1}{n} \cos \frac{n\pi}{2} \right| \le \frac{1}{n} < \varepsilon$$

if
$$n > \frac{1}{\varepsilon}$$
 we choose $m = \left[\frac{1}{\varepsilon}\right] + 1$.

$$\therefore |a_n - 0| < \varepsilon \text{ for } n > m.$$
 $\therefore \{a_n\}_n \text{ converges to } 0.$

3. Prove that
$$\lim_{n \to \infty} \left(\sqrt{n+1} - \sqrt{n} \right) = 0.$$
 (B.H., 2002)

Solution: Here
$$\left|\sqrt{n+1}-\sqrt{n}-0\right|=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\sqrt{n+1}+\sqrt{n}}$$

$$=\frac{1}{\sqrt{n+1}+\sqrt{n}}<\frac{1}{2\sqrt{n}}$$

$$\left(\because \frac{1}{\sqrt{n+1}}<\frac{1}{\sqrt{n}}\right)$$

$$\therefore \left| \sqrt{n+1} - \sqrt{n} - 0 \right| < \epsilon, \text{ if } \frac{1}{2\sqrt{n}} < \epsilon \text{ or, if } n > \frac{1}{4\epsilon^2}$$

We choose
$$m = \left[\frac{1}{4\varepsilon^2}\right] + 1$$

$$\therefore \left| \sqrt{n+1} - \sqrt{n} - 0 \right| < \varepsilon \text{ when } n > m. \quad \therefore \lim_{n \to \infty} \left(\sqrt{n+1} - \sqrt{n} \right) = 0.$$

4. If
$$u_n = \frac{2}{3} \cdot \frac{5}{7} \dots \frac{3n-1}{4n-1}$$
. Show that $\lim_{n \to \infty} u_n = 0$.

Solution: Here
$$\lim_{n\to\infty} \left| \frac{u_{n+1}}{u_n} \right| = \lim_{n\to\infty} \frac{3n+2}{4n+3} = \frac{3}{4} < 1$$
. $\therefore \lim_{n\to\infty} u_n = 0$

We use the result of the following theorem:

If $\{x_n\}_n$ be a sequence such that

$$\lim_{n \to \infty} \left| \frac{x_{n+1}}{x_n} \right| = l \ (0 \le l < 1), \text{ then } \lim_{n \to \infty} x_n = 0]$$

5. If
$$u_n = \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots 2n}$$
 and $v_n = \frac{3 \cdot 5 \cdots (2n+1)}{2 \cdot 4 \cdot 6 \cdots 2n}$,

then show that $\lim_{n\to\infty} u_n = 0$ and $v_n \to \infty$ and $\frac{1}{2} < u_n v_n < 1$.

Solution: Here
$$\frac{1}{2} < \frac{2}{3}$$
, $\frac{3}{4} < \frac{4}{5}$, etc. $\frac{2n-1}{2n} < \frac{2n}{2n+1}$.

Now,
$$u_n^2 = \left(\frac{1}{2} \cdot \frac{3}{4} \cdot \dots \cdot \frac{2n-1}{2n}\right) \left(\frac{1}{2} \cdot \frac{3}{4} \cdot \dots \cdot \frac{2n-1}{2n}\right)$$

$$<\frac{1}{2}\cdot\frac{3}{4}\cdot\cdots\frac{2n-1}{2n}\times\frac{2}{3}\cdot\frac{4}{5}\cdot\cdots\cdot\frac{2n}{2n+1}=\frac{1}{2n+1}$$

$$\therefore u_n < \frac{1}{\sqrt{2n+1}} < \varepsilon, \text{ if } 2n+1 > \frac{1}{\varepsilon^2} \qquad \text{or,} \quad \text{if } n > \frac{1}{2} \left(\frac{1}{\varepsilon^2} - 1 \right)$$

$$\therefore |u_n - 0| < \varepsilon, \text{ if } n > m \text{ where } m = \left[\frac{1}{2}\left(\frac{1}{\varepsilon^2} - 1\right)\right] + 1. \quad \therefore \text{ Lt } u_n = 0.$$

Again,
$$\frac{3}{2} > \frac{4}{3}$$
, $\frac{5}{4} > \frac{6}{5}$... $\frac{2n+1}{2n} > \frac{2n+2}{2n+1}$

$$v_n^2 = \left(\frac{2}{3} \cdot \frac{5}{4} \cdots \frac{2n+1}{2n}\right)^2 > \frac{2}{3} \cdot \frac{5}{4} \cdots \frac{2n+1}{2n} \cdot \frac{4}{3} \cdot \frac{6}{5} \cdots \frac{2n+2}{2n+1} = n+1$$

$$v_n > \sqrt{n+1} > G$$
, if $n > G^2 - 1$ (G is large at pleasure)

$$\therefore \quad v_n \to + \infty \text{ as } n \to \infty.$$

Now
$$u_n v_n = \frac{1}{2} \cdot \frac{3}{4} \cdot ... \cdot \frac{2n-1}{2n} \cdot \frac{3}{2} \cdot \frac{5}{4} \cdot ... \cdot \frac{2n+1}{2n}$$

$$<\frac{2}{3}\cdot\frac{4}{5}\cdots\frac{2n}{2n+1}\cdot\frac{3}{2}\cdot\frac{5}{4}\cdots\frac{2n+1}{2n}=1$$
 ... (1)

Also
$$u_n v_n = \frac{1}{2} \cdot \frac{3}{4} \cdot ... \cdot \frac{2n-1}{2n} \cdot \frac{3}{2} \cdot \frac{5}{4} \cdot ... \cdot \frac{2n+1}{2n}$$

$$> \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot ... \cdot \frac{2n-1}{2n} \cdot \frac{4}{3} \cdot \frac{6}{5} \cdot ... \cdot \frac{2n}{2n-1} \cdot \frac{2n+2}{2n+1} = \frac{1}{2} \cdot \frac{2n+2}{2n+1} > \frac{1}{2} \cdot ... (2)$$

Combining the two results (1) and (2) $\therefore \frac{1}{2} < u_n v_n < 1$.

6. Given that $\{a_n\}_n$ as a sequence such that $a_2 \le a_4 \le a_6 \le ... \le a_5 \le a_3 \le a_1$ and a sequence $\{b_n\}_n$ where $b_n = a_{2n-1} - a_{2n}$ converges to 0, then show that the sequence $\{a_n\}_n$ is convergent.

Solution: $\{a_n\}_n$ consists of two subsequence $\{a_{2n}\}_n$ and $\{a_{2n-1}\}_n$ of which $\{a_{2n}\}_n$ is monotone increasing and $\{a_{2n-1}\}_n$ is monotone decreasing. The sequence $\{a_{2n}\}_n$ is bounded above by a_1 and the sequence $\{a_{2n-1}\}_n$ is bounded below by a_2 . Hence both the sequences are convergent.

Let $\{a_{2n}\}_n$ converge to l and $\{a_{2n-1}\}_n$ converge to l'.

Now $\{b_n\}_n$ converges to 0.

$$\lim_{n \to \infty} b_n = 0. \text{ or, } \lim_{n \to \infty} (a_{2n-1} - a_{2n}) = 0 \text{ or, } l^1 - l = 0. \text{ or, } l = l^1$$

 \therefore The sequence $\{a_n\}_n$ converges to l.

7. Let a sequence
$$\{s_n\}_n$$
 be defined as $s_{n+1} = \frac{4+3s_n}{3+2s_n}$ $n \ge 1$, $s_1 = 1$.

Show that $\{s_n\}_n$ converges to $\sqrt{2}$.

Solution: Here
$$s_{n+2} - s_{n+1} = \frac{(s_{n+1} - s_n)}{(3 + 2s_{n+1})(3 + 2s_n)}$$

$$\therefore s_{n+2} > s_{n+1} \text{ if } s_{n+1} > s_n, \text{ i.e., according as } s_2 > s_1$$

Now $s_2 = \frac{7}{5} > s_1$:: $\{s_n\}_n$ is a monotone increasing sequence.

Now,
$$s_{n+1} - 1 = \frac{1 + s_n}{3 + 2 s_n} < 1$$

 $\therefore 0 < s_n < 2 \ \forall n.$ $\therefore \{s_n\}_n$ is a convergent sequence.

Let
$$\lim_{n \to \infty} s_n = l$$
. $\therefore \lim_{n \to \infty} s_{n+1} = \frac{4+3 \lim_{n \to \infty} s_n}{3+2 \lim_{n \to \infty} s_n}$

$$l = \frac{4+3l}{3+2l} \qquad \therefore \quad l^2 = 2 \qquad \therefore \quad l = \sqrt{2}$$

Since the terms are all positive, l can not be negative.

8. A sequence $\{x_n\}_n$ is defined as follows

$$x_{n+1} = \sqrt{\frac{ab^2 + x_n^2}{a+1}} \quad \forall \ n \ge 1 \text{ and } x_1 = a > 0.$$

Prove that (i) $\{x_n\}_n$ is monotone decreasing and bounded if $x_1 > b$.

- (ii) $\{x_n\}_n$ is monotone increasing and bounded if $x_1 < b$.
- (iii) in either case $\{x_n\}_n$ converges to b.

Solution:
$$x_{n+1}^2 - x_n^2 = \frac{x_n^2 - x_{n-1}^2}{a+1} = \dots = \frac{x_2^2 - x_1^2}{(a+1)^{n-1}} = \frac{a(b^2 - x_1^2)}{(a+1)^n}$$

 $\therefore x_{n+1} \ge x_n \text{ according as } b \ge x_1$

 $x_n : \{x_n\}_n$ is monotone increasing or decreasing according as $x_1 < b$ or, $x_1 > b$.

Now,
$$x_{n+1}^2 - b^2 = \frac{x_n^2 - b^2}{a+1} = \frac{x_{n-1}^2 - b^2}{(a+1)^2} = \dots = \frac{x_1^2 - b^2}{(a+1)^n}$$
.

if $x_1 < b$, $0 < x_n < b$, then $\{x_n\}_n$ is monotone increasing and bounded above. if $x_1 > b$ $x_n > b$ and then $\{x_n\}_n$ is monotone decreasing and bounded below, In either case $\{x_n\}_n$ is convergent.

Let $\lim_{n\to\infty} x_n = l$. \therefore Taking limit we have, $x_{n+1} \to \sqrt{\frac{ab^2 + x_n^2}{a+1}}$ as $n\to\infty$

$$\Rightarrow l^2 = \frac{ab^2 + l^2}{a+1} \quad \therefore \quad l = b.$$

 $\therefore \{x_n\}_n$ converges to b.

9. If the sequence $\{a_n\}_n$ and $\{b_n\}_n$ converge to A and B respectively, then (B.H., 2000) $\lim \frac{1}{n} (a_1 b_n + a_2 b_{n-1} + \dots + a_n b_1) = AB.$

Solution: Let us put $a_n = A + x_n$ and $|x_n| = X_n$.

Since $\{a_n\}_n$ converges to A, $\lim a_n = A$ $\therefore x_n \to 0$ and hence $X_n \to 0$

 $\lim_{n\to\infty}\frac{(X_1+\cdots+X_n)}{n}=0\quad\dots(1)$.. By Cauchy's first theorem on limit

Now
$$\frac{1}{n} (a_1 b_n + a_2 b_{n-1} + \dots + a_n b_1)$$

$$= \frac{1}{n} [(A + x_1)b_n + (A + x_2) b_{n-1} + \dots + (A + x_n)b_1]$$

$$= \frac{A}{n} (b_1 + \dots + b_n) + \frac{1}{n} (x_1b_n + \dots + x_nb_1) \dots (2)$$
 $\{b_n\}_n \text{ converges implies } \{b_n\}_n \text{ is bounded.}$
Hence $|b_n| < k \text{ for all } n.$

$$\therefore \frac{1}{n} | (x_1 b_n + \dots + x_n b_1) | < \frac{k}{n} | x_1 | + \dots + | x_n | = \frac{k}{n} (X_1 + \dots + X_n)$$

$$\therefore \lim_{n \to \infty} \frac{1}{n} | (x_1 b_n + \dots + x_n b_1) | = 0 \text{ by (1)}$$

Again $\lim_{n\to\infty}b_n=B$.

$$\therefore \lim_{n \to \infty} \frac{1}{n} (b_1 + \dots + b_n) = B \text{ [By Cauchy's first limit theorem]}.$$

:. By (2)
$$\lim \frac{1}{n} (a_1 b_{n-1} + a_2 b_n + ... + a_n b_1) = AB$$
.

Show by Cauchy's general principle of convergence that the sequence $\left\{\frac{n-1}{n+1}\right\}_n$ is convergent. (C.H., 1983)

Solution: Here $x_n = \frac{n-1}{n+1}$ we take positive integers m and n such that m > n.

$$|x_m - x_n| = \left| \frac{m-1}{m+1} - \frac{n-1}{n+1} \right| = \frac{2(m-n)}{(m+1)(n+1)}$$

$$< \frac{2}{n} \frac{\left(1 - \frac{n}{m}\right)}{(n+1)^2} < \frac{2}{n^3} < \varepsilon \quad \text{if} \quad n^3 > \frac{2}{\varepsilon} \quad \text{or} \quad n > \left(\frac{2}{\varepsilon}\right)^{\frac{1}{3}}.$$

We choose
$$n_0 = \left[\frac{2}{\varepsilon}\right]^{\frac{1}{3}} + 1$$
. Then $|x_m - x_n| < \varepsilon \ \forall m, n > n_0$.

Hence $\{x_n\}_n$ is convergent.

11. Prove that the sequences
$$\{x_n\}_n$$
 and $\{y_n\}_n$ where $x_n = \sum_{r=1}^n \frac{1}{r} - \log n$ and $y_n = \sum_{r=1}^n \frac{1}{r}$

$$\sum_{r=1}^{n-1} \frac{1}{r} - \log n \ (n \ge 2)$$
 converge to the same limit.

Solution: Here,
$$x_{n+1} - x_n = \frac{1}{n+1} - \log\left(1 + \frac{1}{n}\right)$$

 $y_{n+1} - y_n = \frac{1}{n} - \log\left(1 + \frac{1}{n}\right)$

 $\left\{\left(1+\frac{1}{n}\right)^{n+1}\right\}$ is strictly monotone decreasing and bounded below, therefore

convergent and converges to e.

Also, $\left\{ \left(1 + \frac{1}{n}\right)^n \right\}$ is strictly monotone increasing and bounded above, therefore

convergent and converges to e.

$$\left(1+\frac{1}{n}\right)^{n+1} > e \Rightarrow \log\left(1+\frac{1}{n}\right) > \frac{1}{n+1} \ \forall \ n$$
 ... (1)

 $\left(1+\frac{1}{n}\right)^n < e \Rightarrow \log\left(1+\frac{1}{n}\right) < \frac{1}{n}$

 $\therefore \{x_n\}_n$ is monotone decreasing and $\{y_n\}_n$ is monotone increasing.

$$(2) \Rightarrow \frac{1}{n} > \log (n+1) - \log n \Rightarrow \sum_{n=1}^{\infty} \sum_{n=1}^{\infty} \log (n+1) > \log n$$

 $x_n > 0 \ \forall n$ shows that $\{x_n\}_n$ is monotone decreasing and bounded below, hence convergent.

Let
$$\lim_{n \to \infty} x_n = \gamma$$

Also $\lim_{n \to \infty} (x_n - y_n) = \lim_{n \to \infty} \frac{1}{n} = 0$:: $\{y_n\}_n$ converges to γ .

Note: $x_1 = 1$ and since $\{x_n\}_n$ is monotone decreasing, $\gamma < 1$ $y_2 = 1 - \log 2 > 0.3 \{y_n\}_n$ being monotone increasing. $\gamma > 0.3$. Hence, $0.3 < \gamma < 1$. γ is called **Euler's constant**. 5. Examine whether the following sequences are Cauchy sequences or not.

(a)
$$\left\{1 + \frac{1}{2} + \dots + \frac{1}{n}\right\}_n$$

(a)
$$\left\{1 + \frac{1}{2} + \dots + \frac{1}{n}\right\}_n$$
 (b) $\left\{1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}\right\}_n$

(c)
$$\{(-1)_n^n\}_n$$

(c)
$$\{(-1)_n^n\}_n$$
 (d) $\left\{\frac{n-1}{n+1}\right\}_n$ (e) $\left\{\frac{1}{n}\right\}_n$ (C.H., 1988)