2.2.1 The Bragg's Treatment : Bragg's Law

In 1912, W.H. Bragg and W.L. Bragg put forward a model which
generates the conditions for diffraction in a very simple way. They pointed
that a_crystal may be divided into various sets of parallel planes. The
dircctions of diffraction lines can then be accounted for if x- rays are
considered to-be reflected by such a set of parallel atomic planes followed
by the constructive interference of the resulting reflected rays. Thus the
problem of diffraction of x- rays by the atoms was converted into the problen:
of reflection of x-rays by the parallel atomic planes. Hence the words.
‘diffraction’ and ‘reflection’ are mutually interchangeable in Bragg's treat-
ment. Based on these considerations, Braggs derived a simple mathematical
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relationship which serves as a condition for the Bragg reflection to occur. This
condition is known as the Bragg's law. ' '

O O—O0—O0—0—0—0

Fig. 2.2. Bragg’s reflection of x-rays from the atomic planes.

To obtain the Bragg's law, consider a set of parallel atomic planes witk
interplanar spacing d and having Miller indices (hkl). Let a parallel beam of
x-rays of wavelcngth A be incident on these parallel planes ata glarici_ng angle
g such that the rays lie in the plane of the paper. Consider two such rays 1
and 2 which strike the first two planes and get partially reflected at the same
angle @ in accordance with the Bragg's treatment as shown in Fig. 2.2. The
diffraction is the consequence of constructive interference of these reflected
rays. Let PL and PM -be the perpendiculars drawn from the point P.on the
" incident and reflected portions of ray 2 respectively. The path difference
_between rays 1 and 2 is, therefore, given by (LQ + QM). Since LQ=QM
= d sinf, we get '

Path difference = 2d sin®

For constructive interference of rays 1 and 2, the path difference must
be an integral multiple of wavelength A, ie.,

2d sin@ = nA ' - (2.1)
where n is an integer. This equation is called the Bragg's law. The diffraction
takes place for those values of d, 6, A-and n which -satisfy the Bragg's
condition. In Eq. (2.1), n represents the order of reflection. For n =0, we_
zet the zcroth order reflection which occurs for 8 equal to zero, ie., in the
direction of the incident beam and hence it cannot be observed experimen-
tally. For the given values of d and A, the higher order reflections appear

“for larger values of 6. The diffraction lines appearing for n = 1, 2 and 3
are called first, second and third order diffraction lines respectively and so -
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on. The intensity of the reflected lines decreases with increase in the value
of n or 8. The highest possible order is determined by the condition that
- sin O cannot exceed unity. Also, since sin® < 1, A must be < d for Bragg
reflection to occur. Taking d ~ 10-'° m, we obtain A < 10 m or 1A -
_ X-rays having wavelength in this range arc, therefore, preferred for analjsis
. of crystal structures. : - . ' '
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24 RECIPROCAL LATTICE

As described carlicr, the diffraction of x-rays occurs from various scts
of parallel plancs having different oricntations (slopes) and interplanar spac-
ings. In certain situations involving the presence of a number of sets of parallcl
planes with different oricntations, it becomes difficult to visualize all such
plancs because of their two-dimensional nature. The problem was simplified
by P.P. Ewald by dcveloping a new type of latticc known as the reciprocal
Jattice. The idea underlying the development was that each set of parallcl
planes could be represented by a normal to these planes having length equal
to the reciprocal of the interplanar spacing. Thus the dircction of each normal
represents the orientation of the corresponding sct of parallel planes and its
length is proportional to the reciprocal of the interplanar spacing.

The normals are drawn with reference to an arbitrary origin and points
arc marked at their ends. These points form a regular arrangement which is
called a reciprocal lattice. Obviously, each point in a reciprocal lattice is a
representative point of a particular parallel set of planes and it becomes casicr
to deal with such points than with sets of planes.

A reciprocal lattice to a direct lattice is constructed using the following
procedure :

(a) Take origin at some arbitrary point and draw normals to every
set of parallel planes of the direct lattice.

(b) Take length cf cach normal equal to the reciprocal of the
interplanar spacing for the corresponding sct of planes. The
terminal points of these normals form the reciprocal lattice.

Consider, for example, a unit cell of monoclinic crystal in which a #
b#c,a=y=90°and > 90° as shown in Fig. 2.8. For simplicity, we orient
the unit cell in such a v:zay that the b-axis is perpendicular to the plane of the
paper; hence a and c-axes lic in the plane of the paper as shown in Fig. 2.9.

Consider plancs of the type
(hOI) which arc parallel to b-axis,
i.c., perpendicular to the plane of
the paper. Hence normal to these
planes lie in the planc of the paper.
The planes (h01), being perpendic-
ular to the plane of the paper, are
represented by lines. Thus the line
(101) in fact means the planc (101),
and so on. Taking the point of in-
tersection of the three axcs as the
Fig. 2.8. Unit cell of a monoclinic crystal. origin, normals are drawn - to the

(100)

7

7
p
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plancs (h0l) and their Iengths are taken to be 1/d, , where d, , is the interplanar
spacing for the planes (h0l). For example, since the planes (200) have half
the interplanar spacing as compared to the planc (100), the reciprocal lattice
- point (200) is twice as far away as point (100) from the origin. If normals
to all the (hkl) plancs arc drawn, a three-dimensional reciprocal lattice is
obtained. ‘

Fig. 2.9. Two-dimensional reciprocal lattice to a monoclinic latiice.
The b-axis is perpendicular 10 ine plane of the paper.

2.4.1 Reciprocal Lattice Vectors

A reciprocal lattice vector, Oy 18 defined as a vector having mag-
nitude equal to the reciprocal of the interplanar spacing d,,;, and direction
coinciding with normal to the (kkl) planes. Thus, we have

Opa = 5 n (2.10)
hki
£ 2 ‘
where n is the unit vector normal to the (hkl) planes. In fact, a vector drawn:
. from the origin to any point in the reciprocal lattice is a reciprocal lattice

vector.

Like a direct lattice, a reciprocal lattice also has a unit cell which is
of the form of a parallelopiped. The unit cell is formed by the shortest
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-normals along the threc directions, i.c., aldng the normals to the planes (1G0),
(010) and (001). These normals produce recipron=&aiticc vectors designated -

as Gygqr Ogyp A Oy, Which represent -the ﬁmc!menzal reciprocal Iamce
vectors. :

Let a, b and ¢ be the primitivc translation vectors of the dn'ect lattice
as'shown in Fig. 2.8. The basc of the unit cell is formed by the vectors b and
c and its hmght is cqual to d, 4. The volume of the cell is

V= (arca) d,00
_ 1’_'_ area _‘ |b X c|
. or A v v

“In vectpr form, it is written as

; 1 . bxc-:
o n = (2.11)

-where i is the unit vector normal to (100) planes.
From Egq. (2.10), we get

Co=7—8R E @.12)

Denotmg the fundamental reciprocal vectors 6. G, and o, by a¥,
b* and c* respectively, Egs. (2.11) and (2.12) ylcld

bxc
a:bxec. -

at = Oyo0 =
Similarly,

T bt =gy = —e (2.13)

a.bxc

“and

axb .
a.bxe

F - -—
C" = Gpo1 =

where a.bxc = b.cxa i c.axb is the volume of the direct cell. Thus the

reciprocal translation veclors bcar a 51mplc rclalmnshlp to the crystal trans-
lation vectors as :

a* is normal to b and ¢ _
b* is normal to ¢ and a ce - (2.149)
c* is normal to a and b_| | _
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In vector notation, it means

a*b=0 a*c=0 :
b*.c=0 b*a=0 | T (2.15)
c*.a=0 c*b=0 _|

Taking scalar product of a*, b* and ¢* with a, b and ¢ msbeclively
and using Egs. (2.13), we find '

a*ta=1 b*b=1, c*tc=1 (2.16)

It appcars from Eqgs. (2.16) that a*, b* and c* are parallel to a, b and
c respectively. However, this is not always true. In non-cubic crystal systems,
such as monociinic crystal system, as shown in Fig. 2.8, a* and a point in
different wirections, i.e., along OA', and OA respectively. Thus all that is

meant by Egs. (2.16) is that the Iength of a* is the reciprocal of a cos0, where
.0 1s the angle between a* and a.

In some texts on Solid State Physics, the primitive translation vectors

a, b and c of a direct lattice are related to the primitive translation vectors
a* b* and c* of the reciprocal lattice as

a*ta=b*b=c*c=2n : (2.17)

with Eqs. (2. 15) still being valid. These equations can be satisfied by choosing
the reciprocal lattice vectors as

bxec

% = 9

1 -+ a.bxc
cxa

b*=2 . 2.18

A a.bxe ¢ ‘ )

axb

*_2

> " a.bxc _

It is now obvious that every crystal structure is associated with two
important lattices — the direct lattice and the reciprocal lattice. The two
lattices are related to each other by Eqgs. (2.13). The fundamental translation
vectors of the crystal lattice and the reciprocal lattic: hitve dimensions of
[length] and [length]™! respectively. This is why the latter is called the
rcciprocal lattice. Also, the volume of the unit cell of a reciprocal lattice is
inversely proportional to the volume of the unit cell of its direct lattice.

A crystal lattice is a lattice in real or ordinary space, i.c., the spacc
defined by the coordinates, whereas a reciprocal lattice is a latlice in the
reciprocal space, associated k-space or Fourier space. A wave vector k is.
always drawn in the k-space. The points of the crystal lattice are given by
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- T=ma+nb+pc (2:19)
~ where m, n and p are intcgers. Similarly, the reciprocal lattice points or
- reciprocal lattice vectors may be defined as
‘G = ha* + kb* + Ic* (2.20)
where h, k and [ are integers. Every point in the Fourier space has a meaning,
but the reciprocal lattice points defined by Eq. (2.20) carry a special impor-
tance. In order to find the significance of G's, we take the dot product of G
“and T : ° ;
G.T = {(ha* + kb* + ic*) . ima+nb4pc)
=2n (hm+k;ri+lp) = 2xn (an integer)
or . "exp (iIG.T) =1 .
whe-c we have used Eq. (2.17). Thus it is clear from Er . (2.20) that k, kand -
[ define the coordinates of the points of r~ipr cal latice space. In other
words, it means that a point (h,k,[) in the recipy > al spac corresponds to the
set o parallel planes having the Miller indic es (fikt). The« oncept of reciprocal
lattice is useful for redefining the Br.zg's condmon «nd mlmducmg the
concep of Brillouin zones.
2.4.2 Reciprocal Lattice to SC Lattice .
The primitive translation vectors of a sfmplc cubic lattice may be
writtcn as
| a=ai,b=ai,c=ai.
Volume of the simple cubic unit cell = a.bxc
= a3 (i.jxk) = a’

~ Using Egs. (118}. the rcc:pmcalhmce vestors to the sc lattice are obtained
as .

bxe a}xai 2ma |
* — Lo : .
o hn.bxc on L .al
Simila; ly, _
b =2 =22 _ 2%5 ' @21
a.bxc a
and
¥ axb =21ti
a.bxe a

The Egs. (2.21) indicate that all the three reciprocal lattice vectors are equal
in magr itude which means that the reciprocal lattice to sc lattice is also simple
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. cuvic but with lattice constant equal to 2nla.
2.4.3 Reciprocal Lattice to BCC Lattice

E | The primitive translation vectors
of a body-centred cubic lattice, as shown
in Fig. 2.10, are

a'=-‘;-('if3'-i‘<) )

-~ ~

¢ = -‘;- (i-3+k)

.wherc*a_i-s the length of the cube edge

Fig. 2.10. Primitive translation
vectors of a bcc lattice.

| | and i, 3 and k are the orthogonal unit
vectors along the cube edges. The volume of the primitive cell is given by

A

V = a'b'xce' = % (i+3-K). h— (-i+j+k)x(i—j+k)j

Using Egs. (2.18), the reciprocal lattice vectors are obtained as

—

: wm(af) .
e - 2 ) 2

Similarly,

L]

c'xa’ 2n (7 o ; S
*= ‘= j+k 3
| e a'.b'xc’ a ('l_ ) ' —
and - |
¥ a’xb’ 27 (o =
e =2 = — (k+i
7 * a‘. b'xc' a ( +l)

-t

As will be seen later, these are the primitive translation vectors of an fcc
lattice. Thus the reciprocal lattice to a bcc lattice is fec lattice. '
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2.4.4 Reciprocal Lattice to FCC Lattice

The prim‘itvc translation vectors

T - of an fec l._mice, as shown in Fig. 2.11,

are

b’ = = (i+k) (2.24)
= A £
y ¢ = > (k+l) 2|
Fig. 2.11. Primitive translation Volume of the primitive cell is
vectors of an fcc lattice. given by
V=aJ.dbxc
_a(': ':) @ [fa ~\ (s 2
=5 i+]J) . T [(3+k)x(k+1,]
-2 (i+3) . & (i+5-8)
4
= a’/4

Using Egs. (2.18), the primitive translation vectors of the reciprocal lattice

are obtained as

b’ xc' a®/4) (i+3-k) 27z 2 =
e P2 13(/4 )22 (i)
Similarly,
btlz X a:':::c' = 2: (-—i+3+fi)
. ~and |
- 'xb’ 2r (2 5.3
-c=2n_af :'xc' - : (l_'”k)

(2.25)

Comparing Egs. (2.25) with Egs. (2.22), we find that these are the primitive
translation vectors of a bcc lattice having length of the cube edge as 2n/a.

Thus the reciprocal lattice to an fcc lattice is a bec lattice.
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2.5 PROPERTIES OF RECIPROCAL LATTICE

1. Each point in a reciprocal lattice corresponds to particular set
of parallel planes of the direct lattice.

2. 'The distance of a reciprocal lattice point from an arbitrarily
~ fixed origin is inversely proportional to the interplanar spacing
of the corresponding parallel planes of the direct lattice.

3. The volume of a unit cell of the reciprocal lattice is inversely

proportional to the volume of the corresponding unit cell of the
direct lattice.

4. Theunitcell of the reciprocal lattice need not be a parallelopiped.

~ Itis customary to deal with Wigner-Seitz cell of the reciprocal
lattice which constitutes the Brillouin zone.

'5. The direct lattice is the reciprocal lattice to its own reciprocal
lattice. Simple cubic lattice is self-reciprocal whereas bcc and
fec lattices are reciprocal to each. other.

2.6. BRAGG'S LAW IN RECIPROCAL LATTICE

The Bragg's diffraction condition obtained earlier by considering re-
flection from parallel lattice planes can be used to express geometrical
relationship between the vectors in the reciprocal lattice. Consider a recip-
rocal lattice as shown in Fig. 2.12. Starting from the point A (not necessarily

a reciprocal lattice point), draw a vector A_6 of length 1/A in the direction
of the incident x-ray beam which terminates at the origin O of the reciprocal
lattice. Taking A as the centre, draw a sphere of radius AO which may

intersect some point B of the reciprocal lattice. '

Let the coordinates of point B be (h', %', I') which may have a highest
common factor n, i.e., the coordinates are of the type (nh, nk, nl), where h,

, -
k and I do not have a common factor other than unity. Apparently, vector OB

is the reciprocal vector. It must, therefore, be normal to the plane (h'k'T) or
(hkl) and should have length equal to 1/d,,,, or n/d,,, Thus, ,
OB = i, (2.26)

It follows from the geometry of Fig. 2.12. that one such plane is the planc

AE.If ZEAO =0 is the angle between the incident ray and the normal, then
from AAOB, we have

OB =2 0OE =20A sin0 = 2 smB)/l (227
From Egs. (2.26) and @ 27), we get '
(2 smB)ll nld
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or ; 2d,, sinf = nA

which is the Bragg's law, n being the order of reflection. Thus we notice that
if the coordinates of a reciprocal point, (nh, nk, nl), contain a common factor
n, then it represents nth order reflection from the planes (hkl). It is also evident
from the above geometrical construction that pﬁc Bragg's condition will be
satisficd for a given wavelength A provided the surface of radius 1/A drawn
about the point A intersects a point of the reciprocal lattice. Such a construc-
tion is called Ewald construction.

|

L] [ ] L ] L] [ ] L ] [ ]

o L .
e ° °
‘9 B ® °
_ (h",k'I')

[ ] -] o

L] [ ] L ] -] o -] -0

\.«— Reflecting

L ] ] L L .‘ pl.ane o

Fig. 2.12. Ewald construction Fig. 2.13. Magnified Ewald construction
in the reciprocal lattice. relating reciprocal lattice vector to the
‘ wave vectors of the incident and
reflected radiation.

The Bragg's law itself takes a different form in the reciprocal lattice.

To obtain the modified form of the Bragg's law, we redraw: the vectors AO, -

_.-> .
: (")E)and AB such that each is magmﬁcd by a constant factor of 2x. Let lhc

new vectors bec A' 0' O'B' and A‘B' respectively as shown in Flg 2.13. Since
' A'O' = 27 (AO) = 2m/A, |

- .—+ .
we can represent the wave vecltor k by the vector A'O' The vector O'B' is
the reuprocal vector and is written as G. Thus according to vector algebra,

A' B' must be equal to (k + G). For dlffracuon to occur, the point B' must be
on the sphere, i.e., [ .

AR = KO
or (k +G)? = k2
or. | K2+ 2k.G + G2 = I2

or kG +G:=0 (2.28)
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This is the vector form of Bmgg's Taw and is used in the construcﬁbﬁ-of the
Brillouin zones.

The vector A'B' rcprescnts the dircction of reﬂectcd or scattcred beam.
Dcnoung it by k', we get

kK=k+G-
which gi.vas : : |
_ K¥2sx? - (2.29)
' and | g | :
* K-k=Ak=G ©(230)

This indicates that the scattering does not change the magnitude of

wave vector k; only its direction is changed. Also, the scattered wave differs |

from the incident wave by a reciprocal lattice vector G.
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