Wave Mechanics: Part - 1T

e Schrodinger Wave Equation:

The idea of associating both wave and particle character with a massive particle like electron was first
proposed by de Broglie. He associated a standing wave around the circumference of nth orbit of radius
t having wavelength A so that 2.m.r = n.A.

But according to Boht’s quantum condition for the privileged orbits, we have
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Let us represent a plane wave by the complex variable quantity W(x, t) which is called the wave
function for the particle. Hence W may be represented by —
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This is called Schrodinger one dimensional time-independent wave equation.

For a free particle, V = 0. So the Schrodinger equation reduces to:
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Substituting this result in time independent equation, we get:



This is known as Schrodinger one dimensional time-dependent wave equation.

For a free particle, V = 0.
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Schrodinger Equation in the form HY = EW:

One dimensional time independent Schrodinger equation is:
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Now, (— P + V) is called the Hamiltonian operator Hy for the one dimensional motion (say

in x- direction). So, HxW = EW

For three dimensional motion,
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e Boundary conditions of Schrodinger Equation

e As the operator is in the non-relativistic form, the equation is valid only in the non-relativistic
domain.

e The wave function must be single valued and finite everywhere.
e [If Vs finite (continuous or not), ¥ and VW must be continuous.

e For a surface having infinite potential, ¥ must be zero and the component of V¥ normal to
the surface is undetermined.

Normalisability:

The quantity |W|” is called the probability density. Therefore |W|’dv is the probability that the
particle will be found in an element of volume dv. So the total probability that the particle may be
found anywhere within the entire space must be unity. So, [ [|*dv = li.e. [Yp*dv = 1.



Any wave function which satisfies this condition is called Normalized wave function or
Normalisable wave function.

Orthogonality:

If Wy, and W, are any two normalized non degenerate eigen functions having different energy eigen

values En, and E,, respectively, then the condition of orthogonality is
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So, we can say that for orthonormal wave function,
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e Probability Current Density:

The state of motion of a particle in a one-dimensional system is specified by a normalized wave
function W. Therefore, the probability of finding the particle at an instant t in an unit volume is

p =9y

So the probability of finding the particle in an element of volume dv is

pdv = YyY*dv

So the probability of finding the particle in an convenient volume is

jpdv = Jz/np*dv

As the total probability density over the entire space is unity that is constant, any decrease in the
volume of p for an element of volume must be accompanied by an equal increase in the value of p in
some other element of volume. Therefore, we can say that the probability flows from one region to
another with time. This shift or flow of probability density may be considered as equivalent to the
probability current density. Thus | represents the rate of decrease of the probability of finding the
particle in the convenient volume.
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Three dimensional time dependent Schrodinger equation is
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The complex conjugate equation of this is
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Subtracting (2) from (1),
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For one dimensional motion, this equation reduces to
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If x; Jy; J- ate the x, y, z components of ] then we can write
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This is known as conservation equation for continuity equation for probability
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The states for which V.f = 0ie. a_lt) = 0 are called stationary States.

e Solution of Schrodinger equation

One dimensional time dependent Schrodinger equation is
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In order to solve this equation by the method of separation of variables let us assume that

Y = 0¢); where 0 is a function of x only and ¢ is a function of t only.
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If V is independent of t, I..H.S. is a function of x only whereas R.H.S. is a function of t only.
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As it is a function of time, it must indicate the periodicity that is wave character. Hence E/h must
correspond to the angular velocity or circular frequency of the wave.

Here w = z?n = 2mY; where T and ¥ are the period and frequency of the wave.
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Hence in order to have a simple solution, 1 may be taken in the form
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e Derivation of operators

1. Position (7):

If a particle is at a distance r from some arbitrary origin and x, y, z are its components along three
rectangular Axes then, the position operator r of the particle is given by:
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r=ix+j'y+k'z
i’,j', k'being the unit vectors in the increasing directions of x, y, z respectively.

2. Momentum (P):

Solution of one dimensional time dependent Schrodinger equation is
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3. Kinetic Energy (T):
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Here T, is the eigenvalue of the operator — 7 o corresponding to the eigenfunction .
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So the operator for Ty is —5———
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4. Total energy (E):

Total energy of a particle for one dimensional motion is

Ei=KE.+PE.=T.+V. ieTi=E-V
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This operator is also called Hamiltonian operator H.

5. Operator E or H as a function of time
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Here E is the eigenvalue of the operator corresponding to the eigen function fla . Therefore, the
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6. Angular Momentum (L)

L=7xpP where? = position vector and p = Linear Momentum
i.e.L =—ih (FxV)
If Lx, Ly and Lz are the x, y, z component of L then



e Commutation relations among the different operators:

1. [x, p]

As x and p are two operators, their commutator i.e. [x, p| is also an operator. If this operator operates
on and eigen function W, then
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2. [H, p]

As H and p are two operators, their commutator i.e. [H, p] is also an operator. If this operator operates
on and eigen function W, then
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~ [H,ply = 0.y i.e. [H,p] = 0 Similarly, [p,H] =0

3. [H,x]

As H and x are two operators, their commutator i.e. [H, x| is also an operator. If this operator operates
on and eigen function W, then

[H,x]y = (Hx — xH)Y = {(ih%)x —x (lh aat>}¢

—('ha ha¢> e i i i &
_lat(ﬂp) X5t ant 1/1 lxat “pat

ox ox Dx
No xTmv=m— ===
W, P v at at m

~ [H,ply = ihfn—xlp i.e. [H,p] = ih% Similarly, [p, H] = —lfl&

a
4‘[X)5;]

0 . . . .
Asxand 35 Are two operators, their commutator 1.e. [x, ]| is also an operator. If this operator operates

> 3%]
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Aspand 5 Are two operators, their commutator i.e. [p, a] is also an operator. If this operator operates

on and eigen function W, then
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Q. Show that the Eigen values of a Hermitian operator are real. 3)

Ans: If W(x) is an Eigen function of a Hermitian operator @ belonging to the Eigen value ‘@’ then we

can write
ay = ay
Taking the complex conjugate, we get,
So, we have
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Since the integrals on the left hand side of the above two equations are equal in view of

jl,l) aydx = flli a*yp*dx; [for real expectation value,{a) = (a)*]

We have, a [ P*pdx = a* [ P*ipdx. Which gives a = a*. So the Eigen values are real in nature.



