
Wave Mechanics: Part – II 

 Schrodinger Wave Equation: 

The idea of associating both wave and particle character with a massive particle like electron was first 

proposed by de Broglie. He associated a standing wave around the circumference of nth orbit of radius 

r having wavelength λ so that 2.ᴨ.r = n.λ. 

But according to Bohr’s quantum condition for the privileged orbits, we have 

𝐼𝜔 = 𝑛ℏ ⇒ 𝑚𝑟2.
𝑣

𝑟
= 𝑛ℏ ⟹ 𝑚𝑣𝑟 = 𝑛ℏ 

∴  
𝑚𝑣𝑟

2𝜋𝑟
=

𝑛ℏ

𝑛𝜆
 ⟹  

𝑚𝑣

2𝜋
=

ℎ

2𝜋𝜆
 ⟹

ℎ

𝜆
= 𝑚𝑣 ⟹  𝜆 =  

ℎ

𝑚𝑣
=  

ℎ

𝑝
 

Let us represent a plane wave by the complex variable quantity Ψ(x, t) which is called the wave 

function for the particle. Hence Ψ may be represented by –  

𝜓 = 𝑎𝑒−𝑖𝜔(𝑡−
𝑥
𝑣

) = 𝑎𝑒−𝑖(𝜔𝑡−
𝜔𝑥
𝑣

) = 𝑎𝑒−𝑖(𝜔𝑡−𝑘𝑥) = 𝑎𝑒𝑖(𝑘𝑥−𝜔𝑡) 

𝑤ℎ𝑒𝑟𝑒, 𝑘 =
𝜔

𝑣
=

2𝜋𝜗

𝜗𝜆
=

2𝜋

𝜆
=

2𝜋

ℎ
𝑝⁄

=
𝑝

ℏ
 

∴ 𝜓 = 𝑎𝑒𝑖(
𝑝
ℏ

𝑥−𝜔𝑡) = 𝑎𝑒𝑖(
𝑝
ℏ

𝑥−
𝐸
ℏ

𝑡) 

∴
𝜕2𝜓

𝜕𝑥2
= −

𝑝2

ℏ2
𝑎𝑒𝑖(

𝑝
ℏ

𝑥−𝜔𝑡) = −
𝑝2

ℏ2
𝜓 

Now, total energy = E = K.E. + P.E. = 
𝑝2

2𝑚
+ 𝑉.  ∴ 𝑝2 = 2𝑚(𝐸 − 𝑉) 

∴  
𝜕2𝜓

𝜕𝑥2
= −

2𝑚

ℏ2
(𝐸 − 𝑉)𝜓   

∴ −
ℏ𝟐

𝟐𝒎

𝝏𝟐𝝍

𝝏𝒙𝟐
+ 𝑽𝝍 = 𝑬𝝍 

This is called Schrodinger one dimensional time-independent wave equation. 

For a free particle, V = 0. So the Schrodinger equation reduces to: 

∴ −
ℏ𝟐

𝟐𝒎

𝝏𝟐𝝍

𝝏𝒙𝟐
= 𝑬𝝍 

Again, 𝜔 = 2𝜋𝜗 =
2𝜋

ℎ
(ℎ𝜗) =

𝐸

ℏ
. ∴ 𝜓 = 𝑎𝑒𝑖(𝑘𝑥−

𝐸

ℏ
𝑡) 

∴
𝜕𝜓

𝜕𝑡
= −𝑖

𝐸

ℏ
𝑎𝑒

𝑖(𝑘𝑥−
𝐸
ℏ

𝑡)
= −𝑖

𝐸

ℏ
𝜓 

∴ 𝐸𝜓 = 𝑖ℏ
𝜕𝜓

𝜕𝑡
 

Substituting this result in time independent equation, we get: 



∴ −
ℏ𝟐

𝟐𝒎

𝝏𝟐𝝍

𝝏𝒙𝟐
+ 𝑽𝝍 = 𝒊ℏ

𝝏𝝍

𝝏𝒕
 

This is known as Schrodinger one dimensional time-dependent wave equation. 

For a free particle, V = 0.   

∴ −
ℏ𝟐

𝟐𝒎

𝝏𝟐𝝍

𝝏𝒙𝟐
= 𝒊ℏ

𝝏𝝍

𝝏𝒕
 

Schrodinger Equation in the form HΨ = EΨ: 

One dimensional time independent Schrodinger equation is: 

−
ℏ𝟐

𝟐𝒎

𝝏𝟐𝝍

𝝏𝒙𝟐
+ 𝑽𝝍 = 𝑬𝝍 

⟹ (−
ℏ𝟐

𝟐𝒎

𝝏𝟐

𝝏𝒙𝟐
+ 𝑽)𝝍 = 𝑬𝝍 

Now, (−
ℏ𝟐

𝟐𝒎

𝝏𝟐

𝝏𝒙𝟐
+ 𝑽) is called the Hamiltonian operator Hx for the one dimensional motion (say 

in x- direction).  So, HxΨ = EΨ 

For three dimensional motion,  

−
ℏ𝟐

𝟐𝒎
𝛁𝟐𝝍 + 𝑽𝝍 = 𝑬𝝍  Schrodinger 3- Dimensional time - independent wave equation 

−
ℏ𝟐

𝟐𝒎
𝛁𝟐𝝍 + 𝑽𝝍 = 𝒊ℏ

𝝏𝝍

𝝏𝒕
  Schrodinger 3- Dimensional time - dependent wave 

equation. 

HΨ = EΨ  Schrodinger Equation in the form HΨ = EΨ 

 Boundary conditions of Schrodinger Equation 
 As the operator is in the non-relativistic form, the equation is valid only in the non-relativistic 

domain. 

 The wave function must be single valued and finite everywhere. 

 If V is finite (continuous or not), Ψ and VΨ must be continuous. 

 For a surface having infinite potential, Ψ must be zero and the component of VΨ normal to 

the surface is undetermined. 

Normalisability: 

The quantity |Ψ|2 is called the probability density. Therefore |Ψ|2dv is the probability that the 

particle will be found in an element of volume dv. So the total probability that the particle may be 

found anywhere within the entire space must be unity. So, ∫ |𝜓|2𝑑𝑣 = 1 𝑖. 𝑒.  ∫ 𝜓𝜓∗𝑑𝑣 = 1. 



Any wave function which satisfies this condition is called Normalized wave function or 

Normalisable wave function. 

Orthogonality: 

If Ψm and Ψn are any two normalized non degenerate eigen functions having different energy eigen 

values Em and En respectively, then the condition of orthogonality is  

∫ 𝜓𝑚
∗𝜓𝑛 𝑑𝑣 = 1; 𝑓𝑜𝑟 𝑚 = 𝑛 

∫ 𝜓𝑚
∗𝜓𝑛 𝑑𝑣 = 0; 𝑓𝑜𝑟 𝑚 ≠ 𝑛  

So, we can say that for orthonormal wave function,  

∫ 𝜓𝑚𝜓𝑛 𝑑𝑣 = 1; 𝑓𝑜𝑟 𝑚 = 𝑛 

∫ 𝜓𝑚𝜓𝑛 𝑑𝑣 = 0; 𝑓𝑜𝑟 𝑚 ≠ 𝑛  

 Probability Current Density: 

The state of motion of a particle in a one-dimensional system is specified by a normalized wave 

function Ψ. Therefore, the probability of finding the particle at an instant t in an unit volume is 

𝜌 = 𝜓𝜓∗ 

So the probability of finding the particle in an element of volume dv is 

𝜌𝑑𝑣 = 𝜓𝜓∗𝑑𝑣 

So the probability of finding the particle in an convenient volume is 

∫ 𝜌𝑑𝑣 = ∫ 𝜓𝜓∗𝑑𝑣 

As the total probability density over the entire space is unity that is constant, any decrease in the 

volume of 𝜌 for an element of volume must be accompanied by an equal increase in the value of 𝜌 in 

some other element of volume. Therefore, we can say that the probability flows from one region to 

another with time. This shift or flow of probability density may be considered as equivalent to the 

probability current density. Thus J represents the rate of decrease of the probability of finding the 

particle in the convenient volume. 

∴ 𝑗 = −
𝜕

𝜕𝑡
∫ 𝜌𝑑𝑣 = −

𝜕

𝜕𝑡
∫ 𝜓𝜓∗𝑑𝑣 = − ∫

𝜕

𝜕𝑡
(𝜓𝜓∗)𝑑𝑣 = − ∫(𝜓

𝜕𝜓∗

𝜕𝑡
+ 𝜓∗

𝜕𝜓

𝜕𝑡
)𝑑𝑣 

Three dimensional time dependent Schrodinger equation is 

−
ℏ𝟐

𝟐𝒎
𝛁𝟐𝝍 + 𝑽𝝍 = 𝒊ℏ

𝝏𝝍

𝝏𝒕
  ---------------------------------------> (1) × Ψ* 



The complex conjugate equation of this is 

−
ℏ𝟐

𝟐𝒎
𝛁𝟐𝝍∗ + 𝑽𝝍∗ = 𝒊ℏ

𝝏𝝍∗

𝝏𝒕
  ---------------------------------------> (2) × Ψ 

Subtracting (2) from (1), 

−
ℏ𝟐

𝟐𝒎
(𝝍∗𝛁𝟐𝝍 − 𝝍𝛁𝟐𝝍∗) = 𝒊ℏ (𝝍∗

𝝏𝝍

𝝏𝒕
+ 𝝍

𝝏𝝍∗

𝝏𝒕
) = 𝒊ℏ

𝝏(𝝍𝝍∗)

𝝏𝒕
= 𝒊ℏ

𝝏𝝆

𝝏𝒕
 

∴
𝝏𝝆

𝝏𝒕
=

𝒊ℏ

𝟐𝒎
(𝝍∗𝛁𝟐𝝍 − 𝝍𝛁𝟐𝝍∗

) 

For one dimensional motion, this equation reduces to 

(
𝝏𝝆

𝝏𝒕
)

𝒙
=

𝒊ℏ

𝟐𝒎
(𝝍∗

𝝏𝟐𝝍

𝝏𝒙𝟐
− 𝝍

𝝏𝟐𝝍∗

𝝏𝒙𝟐
) =

𝒊ℏ

𝟐𝒎

𝝏

𝝏𝒙
(𝝍∗

𝝏𝝍

𝝏𝒙
− 𝝍

𝝏𝝍∗

𝝏𝒙
) 

Now, 𝑗 = −
𝜕

𝜕𝑡
∫ 𝜌𝑑𝑣 = − ∫ (

𝜕𝜌

𝜕𝑡
) 𝑑𝑣 

If jx; jy; jz are the x, y, z components of 𝑗 then we can write 

𝑗𝑥 = − ∫ (
𝜕𝜌

𝜕𝑡
)

𝑥
𝑑𝑥 = −

𝒊ℏ

𝟐𝒎
∫

𝝏

𝝏𝒙
(𝝍∗

𝝏𝝍

𝝏𝒙
− 𝝍

𝝏𝝍∗

𝝏𝒙
) 𝑑𝑥 = −

𝒊ℏ

𝟐𝒎
∫ 𝒅 (𝝍∗

𝝏𝝍

𝝏𝒙
− 𝝍

𝝏𝝍∗

𝝏𝒙
) 

So, 𝑗𝑥 = −
𝒊ℏ

𝟐𝒎
(𝝍∗ 𝝏𝝍

𝝏𝒙
− 𝝍

𝝏𝝍∗

𝝏𝒙
).  

Similarly, 𝑗𝑦 = −
𝒊ℏ

𝟐𝒎
(𝝍∗ 𝝏𝝍

𝝏𝒚
− 𝝍

𝝏𝝍∗

𝝏𝒚
) and 𝑗𝑧 = −

𝒊ℏ

𝟐𝒎
(𝝍∗ 𝝏𝝍

𝝏𝒛
− 𝝍

𝝏𝝍∗

𝝏𝒛
) 

Now, ∇. 𝑗 =
𝜕𝑗𝑥

𝜕𝑥
+

𝜕𝑗𝑦

𝜕𝑦
+

𝜕𝑗𝑧

𝜕𝑧
= −

𝑖ℏ

2𝑚
[

𝜕

𝜕𝑥
(𝜓∗ 𝜕𝜓

𝜕𝑥
− 𝜓

𝜕𝜓∗

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝜓∗ 𝜕𝜓

𝜕𝑦
− 𝜓

𝜕𝜓∗

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝜓∗ 𝜕𝜓

𝜕𝑧
− 𝜓

𝜕𝜓∗

𝜕𝑧
)] 

⇒ 𝜵. 𝒋 = −
𝒊ℏ

𝟐𝒎
(𝝍∗𝜵𝟐𝝍 − 𝝍𝜵𝟐𝝍∗) 

∴ 𝛻. 𝑗 = −
𝜕𝜌

𝜕𝑡
  i.e.   

𝝏𝝆

𝝏𝒕
+ 𝜵. 𝒋 = 𝟎 

This is known as conservation equation for continuity equation for probability 

The states for which 𝛻. 𝑗 = 0 i.e. 
𝜕𝜌

𝜕𝑡
= 0 are called stationary States. 

 Solution of Schrodinger equation 

One dimensional time dependent Schrodinger equation is 

−
ℏ2

2𝑚

𝜕2𝜓

𝜕𝑥2
+ 𝑉𝜓 = 𝑖ℏ

𝜕𝜓

𝜕𝑡
 

In order to solve this equation by the method of separation of variables let us assume that 

𝜓 = θ𝜙; where θ is a function of x only and ϕ is a function of t only. 



∴
𝜕2𝜓

𝜕𝑥2
= 𝜙

𝜕2𝜃

𝜕𝑥2
 and 

𝜕𝜓

𝜕𝑡
= 𝜃

𝜕𝜙

𝜕𝑡
 

∴ −
ℏ2

2𝑚
𝜙

𝜕2𝜃

𝜕𝑥2
+ 𝑉𝜃𝜙 = 𝑖ℏ𝜃

𝜕𝜙

𝜕𝑡
 𝑖. 𝑒. −

ℏ2

2𝑚

1

𝜃

𝜕2𝜃

𝜕𝑥2
+ 𝑉 = 𝑖ℏ

1

𝜙

𝜕𝜙

𝜕𝑡
 

If V is independent of t, L.H.S. is a function of x only whereas R.H.S. is a function of t only. 

Let, −
ℏ2

2𝑚

1

𝜃

𝜕2𝜃

𝜕𝑥2
+ 𝑉 = 𝑖ℏ

1

𝜙

𝜕𝜙

𝜕𝑡
= 𝐸 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

∴ −
ℏ2

2𝑚

1

𝜃

𝜕2𝜃

𝜕𝑥2
+ 𝑉 = 𝐸    𝑎𝑛𝑑    𝑖ℏ

1

𝜙

𝜕𝜙

𝜕𝑡
= 𝐸 

𝑁𝑜𝑤, 𝑖ℏ
1

𝜙

𝜕𝜙

𝜕𝑡
= 𝐸 𝑜𝑟,

𝜕𝜙

𝜙
= −

𝑖

ℏ
𝐸𝑑𝑡  

𝑜𝑟, ln 𝜙 = −
𝑖

ℏ
𝐸𝑡 + 𝑐𝑜𝑛𝑠𝑡. (ln 𝐶1 , 𝑠𝑎𝑦) 

𝑜𝑟, 𝝓 = 𝑪𝟏𝒆−
𝒊
ℏ

𝑬𝒕
 

As it is a function of time, it must indicate the periodicity that is wave character. Hence E/ħ must 

correspond to the angular velocity or circular frequency of the wave. 

Here 𝜔 =
2𝜋

𝑇
= 2𝜋𝜗; where T and 𝜗 are the period and frequency of the wave. 

And 
𝐸

ℏ
= 𝜔.    ∴ 𝐸 = ℏ𝜔 =

ℎ

2𝜋
× 2𝜋𝜗 = ℎ𝜗 = 𝑇𝑜𝑡𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 

∴ 𝝓 = 𝑪𝟏𝒆−𝒊𝝎𝒕 

𝐴𝑔𝑎𝑖𝑛, −
ℏ2

2𝑚

1

𝜃

𝜕2𝜃

𝜕𝑥2
+ 𝑉 = 𝐸  𝑜𝑟,

𝜕2𝜃

𝜕𝑥2
+

2𝑚

ℏ2
(𝐸 − 𝑉)𝜃 = 0 

2𝑚

ℏ2
(𝐸 − 𝑉) =

2𝑚

ℏ2
(𝐾. 𝐸. ) =

2𝑚

ℏ2
 (

1

2
𝑚𝑣2) = (

𝑚𝑣

ℏ
)

2

=
𝑝2

ℏ2
=

(ℎ
𝜆⁄ )

2

(ℎ
2𝜋⁄ )

2 = (
2𝜋

𝜆
)

2

= 𝐾2 

∴  
𝜕2𝜃

𝜕𝑥2
+ 𝐾2𝜃 = 0  ∴ 𝜃 = 𝑎𝑒𝑖𝑘𝑥 + 𝑏𝑒−𝑖𝑘𝑥; 𝑤ℎ𝑒𝑟𝑒 𝑎 𝑎𝑛𝑑 𝑏 𝑎𝑟𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠. 

∴ 𝜓 = 𝜃𝜙 = (𝑎𝑒𝑖𝑘𝑥 + 𝑏𝑒−𝑖𝑘𝑥)𝐶1𝑒−𝑖𝜔𝑡 = 𝐴𝑒𝑖(𝑘𝑥−𝜔𝑡) + 𝐵𝑒−𝑖(𝑘𝑥+𝜔𝑡) 

Hence in order to have a simple solution, 𝜓 may be taken in the form 

𝝍 = 𝑨𝒆𝒊(𝒌𝒙−𝝎𝒕) = 𝑨𝒆𝒊(
𝒑𝒙
ℏ

𝒙−
𝑬
ℏ

𝒕)
 

 

 

 



 Derivation of operators 

1.  Position (𝒓⃗⃗): 

If a particle is at a distance r from some arbitrary origin and x, y, z are its components along three 

rectangular Axes then, the position operator r of the particle is given by: 

𝑟 = 𝑖′𝑥 + 𝑗′𝑦 + 𝑘′𝑧;  

 𝑖′, 𝑗′, 𝑘′being the unit vectors in the increasing directions of x, y, z respectively.  

2.  Momentum (𝒑⃗⃗⃗): 

Solution of one dimensional time dependent Schrodinger equation is 

𝝍 = 𝑨𝒆
𝒊(

𝒑𝒙
ℏ

𝒙−
𝑬
ℏ

𝒕)
 

𝜕𝜓

𝜕𝑥
= 𝑖

𝑝𝑥

ℏ
𝐴𝑒𝑖(

𝑝𝑥
ℏ

𝑥−
𝐸
ℏ

𝑡) = 𝑖
𝑝𝑥

ℏ
𝜓   𝑖. 𝑒. −𝒊ℏ

𝝏𝝍

𝝏𝒙
= 𝒑𝒙𝝍 

Here 𝒑𝒙 is the eigenvalue of the operator −𝒊ℏ
𝝏

𝝏𝒙
 corresponding to the eigen-function 𝝍. So, the 

operator for 𝒑𝒙 is −𝒊ℏ
𝝏

𝝏𝒙
.   

Hence in three dimensions, the operator for 𝒑⃗⃗⃗ is - −𝒊ℏ (𝒊′ 𝝏

𝝏𝒙
+ 𝒋′ 𝝏

𝝏𝒚
+ 𝒛′ 𝝏

𝝏𝒛
) = −𝒊ℏ𝛁⃗⃗⃗ 

3.  Kinetic Energy (T): 

𝜓 = 𝐴𝑒𝑖(
𝑝𝑥
ℏ

𝑥−
𝐸
ℏ

𝑡) 
𝜕2𝜓

𝜕𝑥2
= −

𝑝𝑥
2

ℏ𝟐
𝐴𝑒

𝑖(
𝑝𝑥
ℏ

𝑥−
𝐸
ℏ

𝑡)
= −

𝑝𝑥
2

ℏ𝟐
𝜓;    𝑖. 𝑒. −ℏ𝟐 𝜕2𝜓

𝜕𝑥2
= 𝑝𝑥

2𝜓 

Now, 𝑇𝑥 =
𝑝𝑥

2

2𝑚
;   𝑖. 𝑒. 𝑝𝑥

2 = 2𝑚𝑇𝑥;    𝑖. 𝑒. −ℏ𝟐 𝜕2𝜓

𝜕𝑥2
= 2𝑚𝑇𝑥𝜓 

𝑆𝑜, −
ℏ𝟐

𝟐𝒎

𝜕2𝜓

𝜕𝑥2
= 𝑇𝑥𝜓 

Here 𝑇𝑥 is the eigenvalue of the operator −
ℏ𝟐

𝟐𝒎

𝜕2

𝜕𝑥2
 corresponding to the eigenfunction 𝜓. 

So the operator for  𝑇𝑥 is −
ℏ𝟐

𝟐𝒎

𝜕2

𝜕𝑥2 

Hence in three dimension the operator T is  −
ℏ𝟐

𝟐𝒎
𝛁𝟐 

 

 

 

 



4.  Total energy (E): 

Total energy of a particle for one dimensional motion is 

Ex = K.E. + P.E. = Tx + V. i.e. Tx = Ex - V 

Now, −
ℏ𝟐

𝟐𝒎

𝜕2𝜓

𝜕𝑥2 = 𝑇𝑥𝜓 = (𝐸𝑥 − 𝑉)𝜓   𝑖. 𝑒. (−
ℏ𝟐

𝟐𝒎

𝜕2

𝜕𝑥2 + 𝑉) 𝜓 = 𝐸𝑥𝜓 

Here Ex is the eigen value of the operator (−
ℏ𝟐

𝟐𝒎

𝜕2

𝜕𝑥2 + 𝑉) corresponding to the eigen function 𝜓. 

So the operator for Ex is (−
ℏ𝟐

𝟐𝒎

𝜕2

𝜕𝑥2 + 𝑉) 

Hence in three dimension, the operator for E is (−
ℏ𝟐

𝟐𝒎
∇2 + 𝑉) 

This operator is also called Hamiltonian operator H. 

5.  Operator E or H as a function of time 

𝜓 = 𝐴𝑒𝑖(
𝑝𝑥
ℏ

𝑥−
𝐸
ℏ

𝑡)
 

∴
𝜕𝜓

𝜕𝑡
= −𝑖

𝐸

ℏ
𝑎𝑒

𝑖(𝑘𝑥−
𝐸
ℏ

𝑡)
= −𝑖

𝐸

ℏ
𝜓 

∴ 𝑖ℏ
𝜕𝜓

𝜕𝑡
= 𝐸𝜓 

Here E is the eigenvalue of the operator corresponding to the eigen function ℏ
𝜕

𝜕𝑡
 . Therefore, the 

operator for E or H is 𝑖ℏ
𝜕

𝜕𝑡
. 

6.  Angular Momentum (L) 

𝐿⃗⃗ = 𝑟 × 𝑝⃗     𝑤ℎ𝑒𝑟𝑒 𝑟 = 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝑎𝑛𝑑 𝑝⃗ = 𝐿𝑖𝑛𝑒𝑎𝑟 𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚 

𝑖. 𝑒. 𝐿⃗⃗ = −𝑖ℏ (𝑟 × ∇⃗⃗⃗) 

If Lx, Ly and Lz are the x, y, z component of 𝐿⃗⃗ then 

𝐿𝑥 = −𝑖ℏ (𝑦
𝜕

𝜕𝑧
− 𝑧

𝜕

𝜕𝑦
) ; 𝐿𝑦 = −𝑖ℏ (𝑧

𝜕

𝜕𝑥
− 𝑥

𝜕

𝜕𝑧
) ;  𝐿𝑧 = −𝑖ℏ (𝑥

𝜕

𝜕𝑦
− 𝑦

𝜕

𝜕𝑥
) ; 

 

 

 

 

 



 Commutation relations among the different operators: 

1. [x, p]  

As x and p are two operators, their commutator i.e. [x, p] is also an operator. If this operator operates 

on and eigen function Ψ, then 

[𝑥, 𝑝]𝜓 = (𝑥𝑝 − 𝑝𝑥)𝜓 = (−𝑖ℏ𝑥
𝜕

𝜕𝑥
+ 𝑖ℏ

𝜕

𝜕𝑥
𝑥) 𝜓 = −𝑖ℏ𝑥

𝜕𝜓

𝜕𝑥
+ 𝑖ℏ

𝜕

𝜕𝑥
(𝑥𝜓) 

= −𝑖ℏ𝑥
𝜕𝜓

𝜕𝑥
+ 𝑖ℏ𝑥

𝜕𝜓

𝜕𝑥
+ 𝑖ℏ𝜓 = 𝑖ℏ𝜓    ∴ [𝒙, 𝒑] = 𝒊ℏ.   Similarly, [𝒑, 𝒙] = −𝒊ℏ 

2.  [H, p] 

As H and p are two operators, their commutator i.e. [H, p] is also an operator. If this operator operates 

on and eigen function Ψ, then 

[𝐻, 𝑝]𝜓 = (𝐻𝑝 − 𝑝𝐻)𝜓 = {(𝑖ℏ
𝜕

𝜕𝑡
) (−𝑖ℏ

𝜕

𝜕𝑥
) − (−𝑖ℏ

𝜕

𝜕𝑥
) (𝑖ℏ

𝜕

𝜕𝑡
)} 𝜓 

= (ℏ2
𝜕2

𝜕𝑡𝜕𝑥
− ℏ2

𝜕2

𝜕𝑥𝜕𝑡
) 𝜓 = ℏ2

𝜕2𝜓

𝜕𝑡𝜕𝑥
− ℏ2

𝜕2𝜓

𝜕𝑥𝜕𝑡
= 0     

∴ [𝐻, 𝑝]𝜓 = 0. 𝜓 𝑖. 𝑒.  [𝑯, 𝒑] = 𝟎 Similarly, [𝒑, 𝑯] = 𝟎 

3.  [H, x] 

As H and x are two operators, their commutator i.e. [H, x] is also an operator. If this operator operates 

on and eigen function Ψ, then 

[𝐻, 𝑥]𝜓 = (𝐻𝑥 − 𝑥𝐻)𝜓 = {(𝑖ℏ
𝜕

𝜕𝑡
) 𝑥 − 𝑥 (𝑖ℏ

𝜕

𝜕𝑡
)} 𝜓 

= (𝑖ℏ
𝜕

𝜕𝑡
(𝑥𝜓) − 𝑖ℏ𝑥

𝜕𝜓

𝜕𝑡
) = 𝑖ℏ𝑥

𝜕𝜓

𝜕𝑡
+ 𝑖ℏ𝜓

𝜕𝑥

𝜕𝑡
− 𝑖ℏ𝑥

𝜕𝜓

𝜕𝑡
= 𝑖ℏ𝜓

𝜕𝑥

𝜕𝑡
 

Now, px = mv = 𝑚
𝜕𝑥

𝜕𝑡
   ∴

𝜕𝑥

𝜕𝑡
=

𝑝𝑥

𝑚
 

∴ [𝐻, 𝑝]𝜓 = 𝑖ℏ
𝑝𝑥

𝑚
𝜓 𝑖. 𝑒.  [𝑯, 𝒑] = 𝒊ℏ

𝒑𝒙

𝒎
 Similarly, [𝒑, 𝑯] = −𝒊ℏ

𝒑𝒙

𝒎
 

4.  [x, 
𝝏

𝝏𝒙
] 

As x and 
𝜕

𝜕𝑥
 are two operators, their commutator i.e. [x, 

𝜕

𝜕𝑥
] is also an operator. If this operator operates 

on and eigen function Ψ, then 

[𝑥,
𝜕

𝜕𝑥
] 𝜓 = (𝑥

𝜕

𝜕𝑥
−

𝜕

𝜕𝑥
𝑥) 𝜓 = 𝑥

𝜕𝜓

𝜕𝑥
−

𝜕

𝜕𝑥
(𝑥𝜓) = 𝑥

𝜕𝜓

𝜕𝑥
− 𝑥

𝜕𝜓

𝜕𝑥
− 𝜓 = −𝜓 

∴ [𝑥,
𝜕

𝜕𝑥
] 𝜓 = −1. 𝜓 𝑖. 𝑒.  [𝒙,

𝝏

𝝏𝒙
] = −𝟏 Similarly, [

𝝏

𝝏𝒙
, 𝒙] = 𝟏 



5. [p, 
𝝏

𝝏𝒙
] 

As p and 
𝜕

𝜕𝑥
 are two operators, their commutator i.e. [p, 

𝜕

𝜕𝑥
] is also an operator. If this operator operates 

on and eigen function Ψ, then 

[𝑝,
𝜕

𝜕𝑥
] 𝜓 = ((−𝑖ℏ

𝜕

𝜕𝑥
)

𝜕

𝜕𝑥
−

𝜕

𝜕𝑥
(−𝑖ℏ

𝜕

𝜕𝑥
)) 𝜓 = −𝑖ℏ

𝜕2𝜓

𝜕𝑥2
+ 𝑖ℏ

𝜕2𝜓

𝜕𝑥2
= 0 

∴ [𝑝,
𝜕

𝜕𝑥
] 𝜓 = 0. 𝜓 𝑖. 𝑒.  [𝐩,

𝝏

𝝏𝒙
] = 𝟎 Similarly, [

𝝏

𝝏𝒙
, 𝒑] = 𝟎 

6. [H, 
𝝏

𝝏𝒙
] 

As H and 
𝜕

𝜕𝑥
 are two operators, their commutator i.e. [H, 

𝜕

𝜕𝑥
] is also an operator. If this operator 

operates on and eigen function Ψ, then 

[𝐻,
𝜕

𝜕𝑥
] 𝜓 = ((𝑖ℏ

𝜕

𝜕𝑡
)

𝜕

𝜕𝑥
−

𝜕

𝜕𝑥
(𝑖ℏ

𝜕

𝜕𝑡
)) 𝜓 = −𝑖ℏ

𝜕2𝜓

𝜕𝑡𝜕𝑥
+ 𝑖ℏ

𝜕2𝜓

𝜕𝑥𝜕𝑡
= 0 

∴ [𝐻,
𝜕

𝜕𝑥
] 𝜓 = 0. 𝜓 𝑖. 𝑒.  [𝐇,

𝝏

𝝏𝒙
] = 𝟎 Similarly, [

𝝏

𝝏𝒙
, 𝑯] = 𝟎 

Q. Show that the Eigen values of a Hermitian operator are real.  (3) 

Ans: If Ψ(x) is an Eigen function of a Hermitian operator 𝛼̂ belonging to the Eigen value ‘a’, then we 

can write 

𝛼̂𝜓 = 𝑎𝜓 

Taking the complex conjugate, we get, 

𝛼̂∗𝜓∗ = 𝑎∗𝜓∗ 

So, we have 

∫ 𝜓∗𝛼̂𝜓𝑑𝑥 = ∫ 𝜓∗𝑎𝜓𝑑𝑥 = 𝑎 ∫ 𝜓∗𝜓𝑑𝑥 − − − −→ (1) 

∫ 𝜓𝛼̂∗𝜓∗𝑑𝑥 = ∫ 𝜓𝑎∗𝜓∗𝑑𝑥 = 𝑎∗ ∫ 𝜓𝜓∗𝑑𝑥 − − − −→ (2) 

Since the integrals on the left hand side of the above two equations are equal in view of 

∫ 𝜓∗𝛼̂𝜓𝑑𝑥 = ∫ 𝜓𝛼̂∗𝜓∗𝑑𝑥 ;  [𝑓𝑜𝑟 𝑟𝑒𝑎𝑙 𝑒𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒, 〈𝛼〉 = 〈𝛼〉∗] 

We have, 𝑎 ∫ 𝜓∗𝜓𝑑𝑥 = 𝑎∗ ∫ 𝜓∗𝜓𝑑𝑥. Which gives 𝑎 = 𝑎∗. So the Eigen values are real in nature.  


