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Chapter Thre,

Simple Harmonic Motion

3.1. Introduction o . .
In Chapter two, we have discussed the motion in a straight line under Variable

acceleration and different initial conditionf» of moti.on. In this c.hapter we sha]|
discuss a special type of motionina straight lm.e, what is knowp as Slmp'le Harmonic
Motion. Before defining simple harmonic motion, Iet}]s expla.m the periodic motigp
and oscillatory motion. When a body repeats its motion congnu?usly ona definite
path in a definite interval of time, its motion is called a ‘periodic motion’ and the
interval of time is called time-period. For example, moon completes one revolution
around the earth in 27.3 days. The motion of the moon is periodic with time periog
27.3 days. The motions of the hands of a clock are also periodic. The time-period of
the minute hand is one hour and that of the hour hand is 12 hours. If a body-in
periodic motion moves along the same path to and fro about a fixed point then the
motion of the body is an oscillatory motion (or vibratory motion), the fixed point is
called the mean position or equilibrium position. The motion of the pendulum of 3
wall clock, the motion of the bob of a simple pendulum, the motion of a bar magnet
suspended in earth’s magnetic field are some examples of oscillatory motion. From
above examples it follows that all oscillatory motions are periodic motions, but all

- periodic motions are not oscillatory. The revolution of Earth round the Sun is a
periodic motion but not an oscillatory motion. The simplest type of oscillatory
motion is simple harmonic motion,

Definition (Simple Harmonic Motion) : When a particle moves in a straight
line with an acceleration which is always directed towards a fixed point on the line
and is proportional to the distance of the particle from the fixed point then the

motion of the particle will be oscillatory motion and this motion is known as simple
harmonic motion or briefly S.H.M.

3.2. Simple Harmonic Motion and its solution.

) Shup?ose a particle starts from rest at a distance q from a fixed point O on a
straight line and moves along  the line X'0X under acceleration which is always

directed towards O and varies as the dis i
' : tance of the particl . hall
1nvestigate the motion analytically, e Tiom 0. Ve - 8

——
X A P <
‘-—-x—? N A X
T a—
Fig. 3.1
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Let at time ¢, P be the position of the
was at A at a distance [OA|= a when its v
from the instant when it is at A,

Let [OP|= x. Then the acceleration of the
O, where 4 (> 0) is a constant (fig. 3.1),

Particle of mass m and its initial position
elocity was zero. Here time ¢ is measured

particle at P is m y x directed towards

Then equation of motion of the particle is m d

F; =—mux ~(32.1)

negative sign is taken on the right hand side, since the acceleration is positive in the

direction of x increasing while in this case x is decreasing in the direction of
acceleration.

Multiplying both sides of (3.2.1) by 2% and integrating, we have

2
(6] o

¢, is a constant of integration.

. (3.2.2)

Using initial condition of motion : x = a, % =0when £=0, we have ¢, = ua?,

dt

ot Q:-Jﬁm (0<x<a)

dt
negative sign is taken on the right hand side of (3.2.2), since velocity is positive in
the direction of x increasing, while in this case x is decreasing.

2
Then (E) = u(a? -x2)

w(3.23)

1 dx
From (3.2.3), dt=- T_— ]
K \a? - x2
; < 1 o5l £ .(3.24)
Integrating, t=cy+ ‘/—cos (a) .
i
At?=0,x=a,hence c;=0.
..(3.2.5)

Thus from (3.2.4), we have x=acos |t
Relations (3.2.3) and (3.2.5) respectively give the velocity and distance covered
at time ¢ for the motion from A to O
__Z
If ¢, be the time from A to O then, from (3.2.5),0=acos yi 1, = h= 2:71

In the motion from A to O, its velocity will be maximum (numerically) on

reaching O, given by V=—a \/ﬁ , which can be obtained by taking x=0in (3.2.2).

7
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50 ADVANCED ANALYTICAL DYNAMICS
plies the particle will cross O and move on the left sjde g

- Since V <0, this im . .
in directed towards O, its velocity wi]| begin
to

As the acceleration is always

diminish (numerically). |
If P’ be the position of the particle on the left of O at any time ¢ such g

|OP’| = JOP| = x (> 0) then OP’ = — x < 0 and the acceration of the particle i5 ;z(\a
directed towards O. Since the acceleration is directed toward§ O and the Pﬂﬂiclef
moving away from O on the negative side of O, so equation of motion of lhle

particles is now

mﬂz(_'z-t_) =—my(-x) or, % =— ux, which is same as equation (B2,

Thus whether the particle is on the right side, or left side of O, we get the same
equation of motion and hence the velocity will be destroyed at the same Tate g
which it increased during the motion from A to O.

Hence velocity of the particle will be zero again when x = — g, which i
obtained from (3.2.2). So the particle will have zero velocity at A’, wher
[0A"]=0Al=a.

At A’, the acceleration is maximum and is directed towards O. So exactly same
motion will be repeated in a reverse direction and the particle again comes to rest 5
A, when the acceleration is directed towards O. So this motion will be repeated over
and over again. Such a motion of the particle is oscillatory about the mean position‘
0.

This oscillatory motion is called Simple Harmonic Motion (S.H.M).

?he maximum distance of the particle on either side of O i.e. ‘a’ is called
amplitude of the oscillation and O is called centre of oscillation.

The total time from A to A’ and back to A is four times the time from A to 0,

since the motion is symmetrical about O, and is givenby T=4¢, = ZTZ . Tis called

lhe tlme-penod or Slmply thC peliod 01 OSCi]Ia[iO" N 1t th tT i tOf ﬂ“
l. i f ,“ ¥
h ote tha 18 mdependen

General solution of S.H.M.

The equation (3.2.1) can be written as (D?+ )x=0...(3.2.6), where D= 4-
g T dr

) General solution of the equation (3.2.6) is x = ¢’ cos ‘/; t+¢” sin \Jp t where ¢’

c i i |

are arbitrary constants, Taking ¢’ =~ccos ¢, ¢” = ¢ sin & we have
X=c cos( \//—1 t+¢

.. (327
where c and gare arbitrary constants,

2.3327
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From (3.2.7 dx _ :
(3.2.7) dr =TCyR sin(Jur+ g
We now impose the condition th i
at at = i i
started from rest. Thus time ¢ Jme ¢ o, thepanticlowasTat Acand i
on 1s measured not from the instant when the particle was
at A but it is measured from some other instant

Then from (3.2.7) and (3.2.8),

.. (3.2.8)

a=ccos(\JH to+ &) andsin( [t 1, + ) =0.

= JH1g+€=0iety=— £ Thenc=a.
H

Thus general solution of the equation (3.2.6) is

..(329)

x=acos(J;_Lt+e)

and hence & =—au sin(\/;_u-r £

i ..(3.2.10)

As t varies, we have from (3.2.9), [x|< a, since cos ( J;_l t+ &) changes periodically

between — 1 and + 1. Then — a < x < a, which implies that the motion of the particle
is oscillatory, oscillating about O. This oscillatory motion is known as simple
harmonic motion. .

The greatest distance a, the particle moves on either side of the centre of
oscillation O, is known as amplitude of the motion.

From (3.2.9) and (3.2.10) we note that both cos( \/H t+ &) and sin ( \/;_1 t+ £)are
periodic functions of period 2% Hence after every period of 2% the particle
i Ju

passes through the same position with same velocity in the same sense. Thus the

. . . 2r spy .
same motion is repeated over and over again at intervals of 7; . This time interval

2% s called the time period of oscillation.

o

" P [ A
The number of complete oscillations per unit time 1s # = <x and n is

vl

called frequency of oscillation.
After one complete oscillation abm_n
angular distance covered around O is twice

O (starting from A and back to A) the
linear angle i.e. 27. Hence the angular

. e i lar frequency of the
distance covered per unit time 1S —2?’5= Jﬁ \/E is called angular ireq

oscillation, which gives interpretation of win SHM.

Scanned with CamScanner



O e ———

= ~

CAL DYNAMICS 2

52 ADVANCED ANALYTICALDYNAMTS

The quantity £is called the phase ang

argument.
i =awe have fp + o
From (3.2.9), since at # = 1o, X = aw 0 \/ﬁ

time that has elapsed, since the particle was at its extreme

=0.

The amount of

. e _Jutre
position A when x =a and t=1tp,ist—tp =1+ 7—;— \/;l , which is called the

phase of the motion at time 7.
Remark : General solution of the equation (3.2.6) can also be written as

x=asin(,/;71+£),bytakingc’=asinac"=acos€inx=c’cos\//71+c” Sin\/;j-t'

33. Geometrical Represéntation of S.H.M.
Suppose a particle moves in a circle of radius B
aand centre at O with uniform angular velocity @. P
Suppose it starts from the point A at time ¢ = 0 from
rest and at time 7, P be the position of the particle .
on the circle. A A=A
Let ZAOP = @ and N be the foot of the
perpendicular on the diameter AA”.
Then x = ON = a cos@ = a cos wt, since B’

‘;—?=wand9=0whent=0, Flg; 5.2
dr : 2

and &= =— = 2 d
4 = -a@sinwr=-wya?-x?, ﬁ- =—aw? cos wt = - w2x.

As the particle moves ahead i . ; "
the diameter is O, where x = 0, %, miEiCrgactes he/pointiyijs projection of

Thus when the partic] i
e fﬁ) : Aemm(c;v.‘:s from A to B along the circle, the point N moves
Simil .
” Wl]n:"liﬂ_‘:),v»::zlolhwamcle moves from B to A’, the point N moves from O to
s comple“r:nr omt? A, the point N will begin to retrace the path from A”to
1on of the particle along the circle with uniform angular

velocity the POinl Ne
' Xecutes oscill . b
the centre of oscillation O (See ﬁgl 33‘20;}’ motion along the straight line AA’ about

Thus the motio .
rotation about O, ; ]0 fN along the diameter js 5,110, Since for one complete

angular dj .
gular distnace covered iIs27zin time T (say) i.e. @T = 2z then

T=21 i
o the time periog of SHM.

le or epoch and \[;Ir + £is called the

S poooo 028098
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So, if a particle moves with uniform angular velocity along the circumference
of a circle then the straight-line motion of the projection of the particle on a diameter
of the circle is called Simple Harmonic Motion. The circle is called the reference
circle of the S.H.M.

3.4. Oscillation of a particle attached to an elastic string in horizontal and
vertical positions.

When an elastic string is attached to a fixed support at one end and a particle
attached to its other end is pulled, then the string is stretched.

If ‘I’ be the natural (i.e., unstretched) length of the string and x be the stretched
length of the the string then extension of the string is x — /. When the tied mass is
released from the pull, a restoring force T will act to play on the mass, which is
directed towards the fixed end of the string, Hooke’s law states that, this restoring
force T directly varies with the per unit extension of the string. Mathematically

T xT—l or,T= ﬂﬁl'—! ; constant of proportionality A is called modulus of elasticity

of the string. T is called the tension of the string.

When x =21, then T = A. Thus A for a string of unit cross-section is equal to the
amount of force which would stretch it to twice its natural length.

(i) Oscillation in horizontal position of the string.

Let OA = a be the natural length of an elastic string which is placed on a

smooth horizontal table.

X B A 0 A Tm B X
L e e d
Fig.3.3
Let a particle of mass m be tied to the end A of the string and the end O is fixed

pto a point B on the table such that
ured from B where 7 = 0, P be the
xtension of the string is AP =x-a.

directed towards O,

on the table. Suppose the particle is pulled u
OB = b and is then let go. Let at time ¢ meas
position of the particle such that OP = x. Thene

. : L on_gX=a
The force acting on the particle at P is tension T= }.—a—-

Equation of motion of the particle is

m d2x = - T (negative sign, since T acts in the direction of x decreasing)

d?
or dx__ A (x-a) . (340)
' d .. .am
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54 ADVANCED ANALYTICAL DYNAMICS

—
Let y=x—a. Then equation (3.4.1) reduces to

dly__2

arr am + (342

which shows that the particle executes S.HM. withy =0 ie. x = a(ie. A) is the

centre of oscillation.
The general solution of (3.4.2) is

y=ccos (,’—&—HSJ
am

where ¢, €are arbitrary constants.

(343

Since B is the position of instanteneous rest, so when t =0, x = b, % =0,
t

Thenat =0, y=b-a, 2 =0.50, from (3.4.3) we have b - a = ¢ coseand

sine=0.
Thus e=0andc=b-a.
Hence from (3.4.3), we have

y=(b—a)cos\/z-t
am
or, x=a+(b—a)cos(\/;l—_n-tj

and % =—(b-a)\/zsin(\/z.y)
am am

If £, be the time to reach the point A from B then x =g at t = t,.So, from (3.4.4),

.. (34.4)

.. (34.5)

=z f?_"
we have 1, = 2V A - Then from (3.4.5), the velocity of the particle on reaching A

isv = (%)Fa =—(b—a)\/%.

Thy . ;
o S:,if,ac:):’ <0 shows that the particle will cross the point A on its left side and
8 becomes slack, tension ceases to act (see fig. 3.3)

Thus th i i
i Ve]oii??l‘zf;l(?f the particle on the left of A is an uniform motion with
. natu)r,alllel nth reac:es apoint A”such that OA = OA’ = a, when the string
. : ngth and velocity at A i ey
e it : ' is v directed away fi . So the
it dir;l;z;stz’h; ali-glsnz) A;gp its left and will move away fronZ Asc:::d(e)r tfﬁSion
. This tension wi i i
will destroy the velocity vy at A’ and will
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compel the particle to be instateneously at rest at B’ again where OB’ = OB, since
the equation of motion of the particle will be same as given by (3.4.1) |

. hl':ror}x;'symnj‘czr)." lime. from A’ to B’ is same as the time from B to A. On
reac mg , te.nsmn is ma.x1mum and directed towards O, while velocity is zero. So
the particle will retrace its path from B’ to A’ and will reach A’ with velocity

A

v,=(b-a) - directed towards O, which is numerically equal tov;. Tension atA’

ceases to act and the particle will move with uniform velocity v, till it reaches the
point A, when the string regains its natural length. As v, = v, (numerically), time
from A’ to A is same as time from A to A”. e ,

At A, the particle will move with velocity v, against the tension acting towards
O and the motion will be guided by the same equation (3.4.1). So, finally the particle
will be at instantaneous rest at B again, the tension is at its maximum value directed
towards O and hence the motion will be repeated over and over again.

Thus we see that the motion is oscillatory. Motion from B to A; from A’ to B';
from B’ to A’ and from A to B are S.H.M.'guided by equation (3.4.1) and the motion
from A to A’ and from A’ to A are uniform.

B

If t, be the time from A to O (or from A’toO)thent, = L= —a_[am
v, b-aV 4

Time from B to O is then ¢, + 1,.

Therefore the time period of oscillation is

T = 4(t) +1,) (from symmetry)

_Alm jam  _a |am | _, [4M 2a

‘4[2\1 2t hoaV A ] 2\ [”+b_—a_]
(ii) Oscillation in vertical position of a string. .
Let OA = a be the natural length of the string which is fixed at the end O. Leta

mass m be tied at the end A and it hangs in equilibrium at B. If Tg be the tension of
the string, the weight of the mas m, mg balances T,. Thus

e (3.4.6).

mga
mg=T0=ﬂ.-1%3- =AB= T.

ownwards upto the position C such that

| move upward from the position of
) wt. mg downward

If now the mass m be pulled vertically d

OC = b and is then let go, the mass m Wil sl
instanteneous rest at C under the forces (i) tension Tupward and 1

(See fig. 3.4).
Let at time ¢, P be the positi

string is x — @ and tension TatPi

on of the mass m where OP = x; the extension of the

_1X=4.
sT=4 p
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A't
1
]
]
]
|
o 0 Ot 2a
a
A A A
To b
BVmg B
AT
P
Cvmg
Fig. 34
Now equation of motion of the mass m is
d%x d?
meX =mg-T £x i irection O¢
a2 g ( e > 01in the direction OC)
d? 2
or, ﬁ =g- -aim(;_a)or’ d_;: == L(x_a_mgaj
dt am A
or, dy =—2y
d? am .. (347

wﬁer: y=x-a- mga :
2 Equation (3.4.7) clearly shows that the mass m executes a

sim . . . . )
: ple harmonic oscillation with centre at y = Oi.e. at x = 2 + 282 = OB. i.e. at the
point B, the equilibrium position of the mass, + .

From (3.4.7), multiplyi
-7), multiplying both sides of i dy .. .
ides of it by ZE and integrating, we have

2
d)’) p) 2

=Q, - L dx 2
(&) - o (%) =Cx-—a7n("”'—m§a)

Initially, at =0, y = p, dx
: ,x=b, o= 0. Therefore,

@ ae-e-2ge)

.. (34.8

am
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Hence, from(3.4.8), we have

2 2 2
de) _ A |[p_q-T82 mga
(dr) "am{(b T2 ) —(X—“" A )]
= A (b-x)| x+b=2 a+ 282l 34
= 7 ..(34.9

Casel.Letb<a+ 2rriga . Then %xt- =0 again

When x =2 (a+£%ﬁj —b> ai.e. before reaching the point A the velocity of
mass will vanish and hence the mass will oscillate between x = b and

the
mga . . . )
x=2 (a+ TJ _ bi.e. the mass will oscillate with centre at B up and down.

2 ;
Case2.Letb>a+ rriga . Then velocity of the mass on reaching the point A

2
ie.x = a,is given by (%x?) =£E(b - a)(b-a_— 2";‘“] >0
n at A has non-zero velocity, but tension ceases

i.e., the mass m in its upward motio
m moves vertically upward

to act as the string becomes unstretched. So the mass
like a free body under the downward acceleration due to gravity.

The velocity of the mass m at A in its upward motion is

N (b—a)[b—a-z”f")

am

(negative sign, since the mass is moving in the direction of x decreasing)

As %‘j—l is the maximum height the mass m can rise above A, so if

A’ = OA = a, then the mass

2l above O such that 0)

v | :
—Lg <2a(= AA'), A isapoint
after reaching its highest point (where the string still remains unstretched) will

nt A with velocity

come down under gravity and shall reach the poi

+ L(b - a)(b -a -M) downwards.
\) am A
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After that the string will be again extended and equation (3.4.7) holds again for

the downward motion.

It can be seen that -‘;—: will vanish againatx=bi.e.atC, with tension now acting

upward at C. So the motion is then repeated. In this case also the motion is oscillatory,

Fb=a+ 2"}'3", the particle will oscillate between A and C, since from

(349),

dV_ A dx
(E) =:"—n-(b-x)(x—a)=> -d—’=0whenx=aandx=b.

3.5. Composition of two simple harmonic motions along the same straight line,
(a) Time periods of two simple harmonic motions are same

Let a particle move along a straight line under two simple harmonic motions
simultaneously. This situation can be visualised by considering a particle oscillating
along a groove on a block of wood and the wood being made to oscillate along the
same line simultaneously.

Let .2n£ be the equal time period of the two simple harmonic motions along the

same su:aight line. With a common origin (the centre of mean position) on the line,
let the displacements due to the two motions be

xy=ay cos(nt + &) and x, = a, cos(nt + §)
where a,, a, are amplitudes and £, & are encchs of the two motions.
The resultant displacement due to two simultaneous motions is given by
X=X +x;=a, cos(nt + £) +a, cos(nt + 5)
=(a, cosg, + - i i i
o 1 €0SE; + a, cos&,) cos nt (a SINE| +a, sing,) sin nt
) COS€) +a, cos & = A cose

and g, sin € +a, sing, = A sing

where A, £are constants.
Then using (3.5.2), we have from (3.5.1)

x=Acos(nt + ¢)
squaring and adding,

2,2,
U T +2a10) cos(g; - g,)

)
or, A= \[la? + a2 +2aa, cos(e; ~¢,)]

and on division,

..(3.5.1)

.. (352

From (3.5.2), we have on .. (3.5.3)

A

. (3.54)

—
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asing; +a,sin £

tang=
a; COSE| +a, cosE,
a, sing, +a,sine
or, e=tan~l| 11" 72°7"9 ...(3.5.5)
@) COSE, +a, CosE,

The resultant motion given by (3.5.3) is a S.H.M. of same time period as that of
the two simultaneous motions along the same line, whose amplitude and epoch are
respectively given by (3.5.4) and (3.5.5).

(b) Time periods of two simple harmonic motions are nearly equal

Let i—” and iz—” be the two nearly equal time periods of two simple harmonic
1

motions along same straight line.
Let n, — ny = A, which is very small.
With acommon origin, let its displacements due to the two motions be given by
x;=aycos(nr+¢) and x,=a,cos(ngt+ &)

i.e. xy = ay cos(nt + ") where €' = Ut + &.
Then the displacement due to the resultant motion is given by
X=X + Xy = a) cos(nt + &) + a; cos(nt + £')

= (a; €0s £ + a, CoSE”) cos nyt - (a; sin £ +a, sin £')sinnyt
ie.x=Acos(nt+¢)
where A cOSE = a,c0s £ +a, cos &’ }

Asin €=aysin g +a,sin £

Squaring and adding, we have from (3.5.7)

. (3.5.6)

. (3.5.7)

Al= a?+a? +2a,a, cos(€’ - £)

ie, A= al2 +a§ +2aja, cos(At +€, 'el)] ..(3.5.8)

tane=
a, CosE| +a, Cos 4

a sing +a, sin(€, + A
a, COSE, +a, COS(E; + A1)
At changes and hence A and £ are not constants, but vary
—ny is very small. From (3.5.8), we see that A is
Itiple of # and maximum value of A is
is an odd multiple of 7 and minimum

- (3.5.9)

or, £=tan~!

With change in time,
with time very slowly, since A=n,
maximum when At + £, - £ is an even mu
@) +a, and A is minimum when A¢ + €= €
value of A is a ~ay.
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o A ——

o simple harmonic motions with nearly equal time Period
ne is simple harmonic at any instant pf time, with time,
period approximately equal to either of the two ‘conjponem mptlons, the ?mplitu de
and epoch of the resultant S.H.M slowly vary wn}3 time; amplitude A varies frop a
definite minimum value a, ~ @, to a definite maximum value a; + a,, the periodj,

Thus resultant of twe
along the same straight li

. : . 2n
time of this change 1§ %"5 ie. et

Remark : To cite an example of two S.H.M. with nearly equal time perjods
along the same straight line, we see that the composition of two vibrations with
nearly equal periods gives rise to the phenomenon of Beats which is actually a sounq
with a variable amplitude varying from a low value to a high value periodically,

Note : Composition of two S.H.M. of two unequal time-periods can not be

made possible.

3.6. Damped Harmonic Oscillations

We now consider the motion of a particle in a straight line under a controlling
force which is always directed to a fixed point on the line and is proportional to its
distance from the fixed point, in a medium which offers a small resistance to its
motion. Let us investigate the effect of force of resistance on the motion.

mn2x mkx
X’ o P X
——————s

Fig. 3.5 (direction of motion along OX )
Letat any time , P be the position of a particle of mass m at a distance x (= OP)

from the fixed point O. The particle is moving in the direction o—}’( , so that velocity

_dx : . i )
X (— Z) of the particle at P is positive in the direction 63{ . Then the controlling

force on the particle at P is mn’x directed towards O and the resistance of the

med. . . - _’
ium to the motl?n is mkx along XO, where k is a small positive number.
Thus the equation of motion of the particle is

x _
" -—muzx—mk% - (36.1)

accelerati d_zx i " -
ion 42 ‘SPositivealong OX (See fig, 3.5),

mnlx
X > < - glkf
O\X\. X
Fig. 3.6
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If at time 1, the position of the particle is at P where OP = x and the particle is
. o . . = . .
moving in the direction XO i.e. in the direction of x decreasing then % <0, and

H : . [ . . 4
resistance of the medium to the motion is in the direction OX i.c. resistance acts in
the direction of x increasing. Then the equation of motion of the particle is

d%x _ . 3 -
m Z,Tx =—mn2x - mk%, (resistance — mk % > 0 in the direction OX )
which is same as the equation (3.6.1) (See fig. 3.6).

Thus the equation (3.6.1) is the equation of motion for all positions P on the
right of O, irrespective of the direction in which the particle is moving.

Similarly, it can be seen that the equation (3.6.1) is the equation of motion for
all positions P on the left of O, which is indiependent of the direction in which the
particle is moving.

Now the equation (3.6.1) can be written in the form

(D2 + kD +n¥)x=0 .. (3.62)

where D = —:i_ir_ , which is a second order linear homogeneous differential equation

with constant coefficients.

The auxiliary equation is @2 + ka + n? = 0. Let its roots be ), o,
Then &, = —k—s,lc22—4n2 &= —k +Jk22-4n2
Nature of the roots @, ¢, depend on the value of k? - 4n2. We consider three

different cases.
Case 1. k2 - 4n? < 0. Both @, @, are then complex numbers.

Let k2 —4n? = -44% (A#0).

..(3.63)

Then from (3.6.3), we have @, =— & +i4, @y =- & - i (where 2=~ 1). The
general solution of equation (3.6.2) is '
x= ¢ (Acosit+Bsin ) . (3.64)

The constants A, B are to be determined from initial conditions of motion.
The solution (3.6.4) can also be put in the form
x= ce'ék' cos(At + €) ..(3.6.5),

by taking A = ¢ cose and B=~¢ sing, where ¢, € are grbitmry constants to be

determined by using initial conditions of motion.

From (3.6.5) we observe that the resulting motion is not exactly a S.H.M. butis

i I 2z =2r (since
almost a simple harmonic motion of time-period | = n2 - Lg2 n'
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so that time period of the resulting motion is nearly equal to the

36V mall), . i .
k is very small) ural S.H.M. (when there 1s no resistance). The amplitude of the

time-period of nat
iz , which steadily decays with time and when ¢ is very large, amplitug

motionisce 2

tends to zero. Such a motion of diminishing amplitude is called damped harmgp;,

B . . —Lgr .
oscillation, the quantity k measures its damping and the quantity e 2" jg calleg
damping coefficient.

The effect of a small resistance of the medium on the particle executing ,
natural S.H.M. of time-period 27 s that it increases the time period slightly as 4 <
n

n, and it gradually decreases the amplitude and after a long time the motion ultimately
dies out. The motion is said to be underdamped.
Case 2. k2 —4n? > 0. Then the roots a,, a, of the auxiliary equation are real and

distinct.
Taking k2 - 4n? =442 (1 # 0), we have @, = - %k+/‘£, =- %k—l.
The general solution of equation (3.6.2) is
x= M (A7 4 B o]
A’, B’ are arbitrary constants to be determined from initial conditions.

From (3.6.6), it is obvious that the motion is non-oscillatory and it ultimately
dies out, since x — 0 as # — oo (as k2 — 442> Q).

In this case the motion is said to be overdamped.
Case 3. k% — 4n? = 0. Then a;, o, are two real equal roots of the auxiliary

equationand a; = @, = %k.
The general solution of the equation (3.6.2) is

x=(c; + ) et .. (360

2 . I
1» €, are arbitrary constants. Here also the motion is non-oscillatory. As x — 0

When 1> e lhe motion I.lltimalel d'es out i € 15 said
iti 1l i ’ i l ’ i i . .
' y The motion in lh]s cas 1

3.7. Forced Oscillation

, Let attime , p
X"OXundera cont
where OP= x.

k

be the position of 2 particle

rolling force mn2y directed of mass m moving on a straight line

towards O, a fixed point on the line,

. (3.66)
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"l"ix mF cos pt
X’ 0 —
—_— X
Fig. 3.7

At the same instant #, the particle is also acted upon by a periodic force

mF cos pt in the direction of motion i.e. along ()_5( (see fig. 3.7).

. R 2
The equation of motion is m % =—mn?x + mF cos pt

or, (D? + n?)x =F cos pt .. (311

=4
where D =g

To solve the equation (3.7.1), let x = e*(# 0) be a solution of (D? + n2)x = 0. Then
the auxiliary equation is @ + n% = 0, whose roots are @ =+ i n(i2 =— 1). So the
complementary function is x; = A cos(nt + £) where A, £ are arbitrary constants. The

. . . Fcos pt
particular integral is x, = 2 1 5 Fcos pt= 7 pz , where we assume that p # n.
+n nc—p

Then the complete primitive of the equation (3.7.1) is

Fcos pt

x=1x;+xy=Acos(nt +€)+ ) (p#n) ...(3.7.2),
n-—p-.

we see that the motion of the particle is a composition of (1) an undisturbed (or

natural) S.H.M. of period 2n , whose amplitude A depends on the initial conditions
n
of motion and (2) an oscillatory motion of period 27” and amplitude —; E P which
‘ nc—

is independent of initial conditions of motion.

The former motion is called free oscillation and the latter motion is a
superimposed S.H.M and is called forced oscillation, whose time-period is same as
the period of disturbing force. The amplitude of the foced oscillation depends on the

period of forced oscillation.

. F .
When p = n, the forcd oscillation represented by e cos pt, with a very
will be dominating over the free oscillation represented by

large i
ge amplitude, h a period which is practically same

A cos(nt + £) and the particle will oscillate wit
as that of the forced oscillation. . .
If p = n, then the particular integral of the equation (3.7.1)is

1 int

F cos nt = Real part of F. Eﬁ—ze"‘

1
D2 + n2 n
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1 int _ gint 0))
Now DZMZ-‘-’ € (D+in)2 +n?
-1
n_ 1 (ymen—L_ 1+L@) )
=" Sramp 7 2""D( 2in) ¢

= gint__1 (1)=—Ii—mz.
=€ 2D 2n

: : . F ..
Hence the particular integral is Zz" sin nf.

Thus the general solution of (3.7.1) is x = A cos(nt + £) + 2—Fn- tsinnt ... (3.73)

From (3.7.3), we observe that amplitude of the forced oscillation continuously
increases with time. This resulting motion is called resonance and this happens
when natural frequency is equal to the frequency of the disturbing periodic force,

3.8. Damped Forced Oscillation

We now consider the motion of a particle in a straight line under the action of a
controlling force proportional to its distance from a fixed point on the line and
directed towards the fixed point, in a medium which offers resistance proportional
to its velocity and is simultaneously acted on by a periodic disturbing force of
magnitude F cos pt per unit mass of the particle. We shall investigate the effect of
force of resistance and periodic force on the free oscillation.

mnie mkx  mF cos pt
N s +—— —
—
dimn
Fig. 3.8

) Let attime 7, P be the position of a particle of mass m moving on a straight line
X’OX under the action of

o([? a controlling force mnZx directed towards 0, afixed point on the line, where
x= f

(ii) a force of resistance mk i (x is the velocity at P) directed towards O,

assuming that the particle is moving along ()_5( (See fig. 3.8), and (ii) a disturbing

periodic force of magnitude in F cos pt, along o_))( (See fig. 3.8)

. Then the equation of motion of the particle is

d%x
m—= =_mn2 — d_x.
dr? X —mk @ +mF cos pt or, (D2+kD+n2)X=Fcos pt ...(38.1)
whereD = 4
dt
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Let x = e% (# 0) be a solution of

uation is (D? + kD + n?)x = 0, then the auxiliary
eq

a?+ka+nt=0=g= %[—ki k2—4n2].

1 : { 2| :
Let k <2n. Then a = 5[—k +2i,|n? —%i\ (i =-1) and the complementary

L _1 2
functionisthenx; =Ae 2l cos(At + €), where A= ,(n? _kT and A, £are arbitrary

constants to be determined from initial conditions of motion.
The particular integral is then

D2 +r2 —kD

Fcospt=F h(Dz T2 KD cos pt

1
Xy = ———
2 D2+ iD+n?

(n? — p?)cos pt + pksin pt " F
(n? - p?)% + p*? Jo2 =i e

n? - p?

where we assume that —————— =cos¢’
f(n2 _p2)2 +p2k2

and —pk_ =sing’ie. £'= tan™! B .
[(n2 - p2y2 + p2i2 2 p?

n"-=p
The general solution of the equation (3.8.1) is then

cos(pt - £)

2 ; 2 L 22 cos(pt - £) ... (3.8.2)
(n*-p*)*+p

_1
x=x;+x,=Ae 2'“cos(ﬂ.t+£)+

The resultant motion is then composition of two oscillations. The first part

A e_%k‘ cos(At + £) corresponds to damped harmonic oscillation (without the presence

N ; ijod 2% and th
of disturbing force) with light damping, since k < 2n having period 5= and the

' . F
second part cos(pt
SN T

forced oscillation.

As t increases, the amplitude of th
diminishes and ultimately dies out when £, <.

— £") is a super imposed S.HM, called

¢ damped harmonic oscillation cominuahlly
Thaus after a long time the resulting
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. — . F :
motion tends to a forced oscillation of amplitude —————— and of peri
[ - 2P+ P22 od

the period of the disturbing force.
riod of the disturbing force is equal to the period of

lar integral part of the general solution of (3.8.1) is

equal to

Remark : If p=nie., thepe

forced oscillation then the particu

x,= LF— sin nt, which corresponds toa forced oscillation having maximum amplitude
1

Il;-. For small k, the forced oscillation has a very large amplitude however small F

mall periodic force may produce an oscillation of very large

may be. Hence a s
od is nearly equal to the period of free oscillation.

amplitude, if its peri

3.9. Illustrative Solved Examples -

Example 39.1. A particle performing a S.H.M. of period T about a centre O

passes through a point P with a velocity v in the direction 6%! .IfOP be equal to x

and the particle returns to P in time ¢ then show that ¢ = Tian! 2T .
b4 2rx
——
X o P A X
Fig. 3.9

Solution : Let a = OA be the amplitude of the S.H.M having time-period

T= —21. Then velocity x (= : i
Ju y i (= v) and distance x of the particle executing S.H.M.ar®
(D

lat
related by W= #(az —xZ)

Since the particle is at P in its motion along 6;: ,sov>0, hence

v= G = v e -2t )

t
1
1 odt

= If:x—\/aff-=x2 = \[ﬁj

(we are measuring ti
) X g time from the instant . . -
and 7, is the time from P to A (see fig, 3 g;; particle is at P in its motion along OA

=°'1=—i—|:si axt
Bl el T _[E'Si“-li] = Lol
a a .

a 2
x ‘[ﬁ >
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From symmetry of oscillatory motion, the time from A to P in its motion along

-

AO is equal to the time fromPto A.
Since ¢ is the time taken by the particle to return to P, so = 2f; = 2 cos1 X
= r

1—y2
y

rium under the attraction of the centres
heir attractions per unit mass at unit
d towards one of them. Show thatits

, 2_,2
= —Z_tm-l__a;t_ -+ cos~! y= tan~!
\/ﬁ x
=T 2L (usi
=i tan (27”) (using (2)).
Example 3.9.2. A particle rests inequilib
of force which attract directly as the distance, t

distance being zand . The particle is displace

P . . 2T
motion is oscillatory of period J_—- .
p+p

mpa+x) - mp'(b-x)
X A C P B X
Fig. 3.10
in equilibrium at C under the attraction

et a particle of mass m rest f
B whereAC:a.CB:b.If;l(>0)and;l (>_ 0) be the
it distance then for equilibrium position at C,

Solution : L
of two centres of force A and
attractions per unit mass at un

pa = p'b ... (1) (See fig. 3.10) o
Let at time ¢, P be the position of the particle where, the particle 18 displaced

at a distance x(= CP) towards B. Then the forces ai:ting on the particle at P are
myu(a + CP) = mi(a + ) acting towards A and r_ny.(b -CP) = mu(fb - x)cz:;li:]ng
towards B (see fig. 3.10). Since acceleration is positive in the direction of x increasing,
the equation of motion of the particle is

d%x

m— =

dix __(u+px by (D)
di?

' : : 2r
S.H.M. having timé period —TIFTT

: ontal plane and is
\ rest ooth hon_z '
article of IS8 7 ¢ other end of which is fastened to 2

i ic string, th : ‘ :
. elassttrletched %ength of the string being /s s.hm.av ;E:at. ll)f
Jane until its distance from the fixed point 1S eh

: (24 5L).
after atime g1ven byr= \};-(2 7=

—mpu(a+x)+ mp'(b- x) or,

which shows that the motion of the particle isa

Example 39.3. Ap s onasm
attached to one end of a
fixed point on the plane. The u
the particle be moved along the P

and is then let go, it will pass the fixed point
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A T P B X

r "

Fig. 3.11
= | be natural length of a light elastic string, which jg
ane. The free end A is attached with a particle of
he plane to point B such that OB = /'(> ) and

Solution : Let OA
attached to a fixed point O on the pl
mass m. The particle is pulled along t

=y
then let go. Then the particle will move along BO under the action of tension of the

string directed towards O (See fig. 3.11).
Let at time 1, P be the position of the particle such that AP = x. There x is the

extension of the string and tension at Pis T = ﬂ.f.

Then equation of motion of the particle is

—x

dix__A
r, —dt—z— - ..(1)

The general solution of equation (1) is

N A
x-ccos(\/%He) w(2)

where c, € are constants to be determined from initial conditions of motion.

dx A
FI:—c msm(\/%tﬂij .3

Initially at 1= 0, x= ' — I, & = 0,
dr

Then from (2) and (3), we have
I'-l=ccoscand0=sine= £=0andc=1/ -1,
Hence from (2), the distance of the particle from A at time ¢ is given by

x=(I'-D cos(‘/%-t) @
and from (3 e __ o | ; |
Tom (3), a=-=D \/mz[sm[\/%tJ @

I 1) be the time from B to A then at t=t
=1,

A
cos[\/%-rl) =01, = % mTl

From (2),

x = 0. So, from (4), we have

N T e e S T T e S T S e
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At =1, the particle reaches the point A with velocity v = (I’ ) \/;nT—l directed

-
along AO, which is obtained from (4) forr=1,.

A A, the string is unstretched and hence tension ceases to act. Thus the particle
will move with uniform velocity v and it will reach the fixed point O in time t, where

v12=OA=I.=>rz=ﬁ\/%_

Thus the particle will reach the point O starting from B in time # where

mln, 1
t=t+t= T[E'Fﬁ]

Example 3.9.4. A particle of unit mass is tied by four equal elastic strings of
natural length / and modulus of elasticity 4 to the comers of a square. If the particle
is displaced a small distance towards one of the corners and then set free, prove that

the time of a small oscillation is 7 "A(:_l-l) , where a is the length of the diagonal of

the square and a is so much greater than [ that the strings remain unstretched.
Solution : Let ABCD be a square. AC, BD areits A _D

two diagonals of length a each. P J;f"
A particle of unit mass is tied by four equal elastic Y
strings of natural length ! and modulus of elasticity A to TZ"' ¢ 0
the corners A, B, C, D of the square. J Q)
Then O, the centre of the square is the position of ¢ c
equilibrium of the particle. Fig. 3.12

Suppose the particle at O be displaced through a small distance x towards the
corner A and now P be its position so that OP = x.

Then the forces acting at P are tension T
- -
tension T; along PC and tension T, along PD.

From fig. 3.12,PA=0A-OP= 7 =%

2 : _ a
PB = {OP2+0B? = x2+% =PDand PC=OP+0C=x+ 7.
By Hooke’s law,

R+ a4x-1

a_x—
.Z_Ix_i' T2= 2.——‘1—4’_=T4

= A2
T1=2. and T3 A 1
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The equation of motion of the particle is then
2
%za =T, -T;-T,cosf - Ty cosf X

OP _
where 8 = ZOPB and cosd = B

From (1), we have

=1

2 2

or, 425 o Ak 2hx[y 4x2 ) 0
dr? =

Since x is very small, we neglect square and higher powers of x. Thus we have

x __ 4, _
™) o @=bx e (2)
From (2), we see that the motion of the particle is a S.H.M. having time-period
T= 22 _ =g |_a .
Ry NAa-)

Example 3.9.5. A particle is moving in a S.H.M. of amplitude a and period T
and when in a position of Instantaneous rest is given a blow which imparts a velocity
u towards the mean position. Show that it will avrrive at its next position of

instantan i - cpis .
Ous rest at a time less by %lﬂn 1(2—';[%) than if it had not received the

impulse. Show that it will continue in S.H.M of the same period but of amplitude
L
(az + u2T2 )2 .

4n?

Solution ; i iti
the line X'OX ;‘; ?irtx:mlc r}.lP be th'e Position of a particle of mass m moving along
Ple harmonic motion about the centre O with time Pefiod

T F . e thc i ons 0
amphtude Of lhe S.H.M. and A, A’ be lhe two POSiti f

‘k
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X A 0o P A X
Fig. 3.13

instantaneous rest, where OA = a (see fig. 3.13). If OP = x, then the equation of the
motion is
2
masx

a2 =—-mlx . W (1)

Time from A to A’ is -1-T= T
2

When the particle receives a blow at A, its equation of motion is

dy
my i myx ..(2)
where v is velocity at P,

From (2) vdv = - pix dx. On integration we have v2 = ¢, — £x2. When x = g, i.e.
at A, v=u(given).Soc| = u? + pta?. Thus we have

v =1l + pa? - ux? ..(3)
The velocity will be zero again when

2 272
;1;c2=uz+;1azor,.\:=\/az+L =Ja2+%- o T=2E |
H 4n JH

1
272 \2
Thus in the second case, the amplitude of the S.H.M. will be [a2 +“4—:;,—) .

Let ¢, be the time from x =atox=-a, i.e. from A to A’

Then from (3), we have % =-\Ju? + pa? - px?

(negative sign, since the particle is moving in the direction of x decreasing)
dx

or, J;I_J(;' dt=- ;:G—J___—T——_;
a? +4 —x
m

a dx in=l
= = sin
= /.u,_2fo — 2 i
a +_# -x T

n PR — Z
= 2sin-! =2tan~! & [ sin~!z=tan™! - ]
) ’ E

2 4 us
+
a u H
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L2, o —15\/_; = Tian-12a7
..—T—:l—2tan p or, ”tan T

Hence the required diffrence in time is

T T, -12ra _ T|x_,, -127a
72T 7:[2 b uT]

T 12za _ T g1 6T
= Teort 228 = Taan (m).

Example 3.9.6. A light elastic string AB of length a is fixed at A and is such
that if a weight W be attached to B the string will be stretched to double its Iength. If

aweight %W be fastened to B and let fall from A, prove that
(i) the subsequent motion is simple harmonic,
(i) its amplitude is %a,
(ii) the distance through which it will fall is 2a, and

(iv) the period of oscillation is -;— ‘/é_ @ J2 + x4+ 2sin! % ).

Solution : If A be the modulus of elasticity of a light A A
elastic string of natural length AB = a, and a wt. W, if
attfxched to the free and B of the string, stretches the a
string to double its length, AA’ (= 2AB) then tension at

2

o N ) ’
A’ will belance the wr. W forequilibrium, so that A24=4 1 [ Tu: I
a
=W=31=W. : P? 1
Ifaweioht LW i . Aw Y
weight —4-W is now attached to the end B and is i
1
let fall from the poi N
point A, then the wr, —l-W il p
7 g Wwi | reach the Fig. 3.14

point B with = X
aspeed u = /282 and the string is then stretched. Suppose, at time f

P be the position of th 1
e wt. < ; i
W W where BP = x, The forces acting at P are tension

T=2%X= ﬂ : "
a g M vertically upward direction and the wr. L W in vertically downward

direction i a & .
irection i.e. in the direction of motion (see fig, 3 14)

Then equation of motion of the wy, Ly is
4
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e
l_w__zg- = J—W—.‘lx
«gad® 4 @
Ax__28( _a) o Ly__4%8 (D

Equation (1) shows that the subsequent motion of the wt. %W is simple harmonic

about the centre y =0 i.e. x= %_

multiplying both sides by 2 % and integrating, we have

(d_y)z e, - 2y o)

From (1),
dt a

d
AtBie,atx=0,y=- %.%aﬂga :

9
Hence from (2), we have ¢; = 2ga + 9&& =—:—‘5
Thus from (2), we have
2
dy) _9ag_dg (3
dt 4 a
The velocity of the particle will vanish
e, Df=dx) = 9ag _4g 2=0i.e.wheny=tkl-,i.e..when.ma
ie. a—(—- -ﬂ) =0, where Tty y 2
and - -g—.
Since x = £ is the centre of oscillation, hence the greatest displacement on
4
illation i a_3a yhichi amplitude of the
either side of the centre of oscillation 15 @ = 5"="47 which is the amp

S.HM.

lwinits downward motion vanishes at x = a,
4

Since the velocity of the wt.
hence the distance through which it falls is AB(= a)+a=2a.

From (3), we have
2
d 3a) 42 . (@
%“N%J( 4) ¢

i irecti otion.
(+ve sign is taken, since y increases in the direction of m

10
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,‘_\/2Tg
g

2a
If t; be the time from A to B then 7, = —g—— = /?

If , be the time form B, where y =— 14’~ to the point, say C, where y = 242 (ie,

x = a) then, form (4)

f'zd;:l\/Zﬁ“ dy
0 2Vgr=—4% z
() -
i
ar =l falgem 22 1 5[£+sin'll].
27 24g 3a 2Vgl2 3

-2
F
Thus time from A to C is ¢, + #,. Hence total time of oscillations i.e. time from
A to C and back to A is 2(#; + #,) (from symmetry)

= 2\%—+%\/§ [ﬂ+25in"{, = %‘/g [4\/2_+7r+25in‘1 %]

Example 3.9.7. A heavy particle is attached to the lower end of an elastic
string, the upper end of which is fixed. The modulus of elasticity of the string is k
times the weight of the particle. The mass is drawn vertically downwards until the
length of the string becomes (n + 1) times its original length and is then released.

Show that the string will be j i /_a_ —cos=l—1_].
ow that the string will be just slack after a time kg[n cos™ — 7

Solution : Let OA(= a) be an untstretched length of a 5
string, the upper end O of the string is fixed and a heavy I
particle of mass m is attached to the lower end A. The mass m
is drawn vertically downwards upto the point B such that
OB = (n + 1) OA = (n + 1)a. Thus AB = na and then the
particle is released from B. Naturally, the particle will beginto  (r+Da
move vertically upwards from rest at B under the action of R
tension in upward direction and weight of the porticle in F
downward direction (see fig. 3.15). j

A

A\ 4
mg

Let at time ¢, P be the position of the barticle. where B
AP = x. Then tension at Pis T = 1X = X (o = i
;la kmg. = (v A =kmg) Fig. 3.15
The equation of motion of the particle is
d2x d2 k 2
m=-=mg—-Tor, X - ,_ X8 dy _ k
a2 priat dt_2=_73y e (D)

where y = x - a.
Y k
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Multiplying equation (1) 2 % and integrating

9 .

’ ) ke
we have [;i_t-) =iy &=y o)
AtB, x=na,and hence y=na - % and —“ii—: = % =0. Hence from (2), we obtain

2
ke _al - 88y _1y2
¢1=7(na k) k(nk 1)
Thus from (2), we have

2 2 )
dy) _a8 oy _1y2_ k&2 dy) _ke|ak 2 -y2
(Er') = (nk—1)*- ="y °"[d: 2 k2(" ‘ Y-y

dy __ [ke . |@® ko142 (3

(negative sign is taken, since -ﬁ—f(:ﬂ) is + ve in the direction of x increasing,

while in this case x is decreasing).
The string becomes just slack when the particle reaches the point A i.e., when x
=0.If 1, be the required time from Bto A i.e. from x=na to x=0, then, from (3), we

have

o —dy e a
e oot
0 kg “y=na-% %:—(nk _ 1)2 _ }‘2
I E _F[ -1__1_+£]
- | & ] D A = sin 12
or, 4 = ke [sm a("k"l)](nk-l)f kg nk-1
T
B ’_a_ —cos=! —L— ¢+ sin"lx+cos7Vx= 2.
= kg[n cos nk—l]( 2

Example 3.9.8. A heavy particle of mass m is att(a;c}';;d to ac;:;z;nii c]):t a;;l ellgi::;
i pion is fixed at 0. The p
bt e e cndsliint;: harmonic, and that, if the greatest

rest at O. Show that part of the motion is . .
28, the modulus of elasticity of the string 15
2 ’

depth of the particle below O is @ €0

inti F" - B)cotB).
i i 28 () 4 (7 - O)cot
%'"E'anza and the particle attains this depth in time /% ({
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Solution : Let OA =4 be the natural length of an I o
elastic string of modulus of elasticity A f I

rticle of mass

With fixed end at O, suppose a pa
attached to the end A is let fall from res} at O. T}}w t}!e Af I
velocity acquired by the porticle on reaching the point A is Ti !
k= ‘/Z—Eg- in vertically downward direction. The particle P;' i e
will then move downward under the tension of the §tn’ng | 4
acting vertically upward and its weight mg acting vertically 5 i
' See fig. 3.16).
downward (See f1g et

Let at time ¢ measured from the instant when the )
particle is at A, P let the position of the particle where AP = x. Tension acting at P j

T =A% . Hence the equation of motion of the particle is
a

dx _ dx _,_ A
m&= =mg-T or, " 8= om* o0 pE)

d?y _ :
) =—my w (1)

_ mga
where y =x— 2

Equation (1) shows that the subsequent motion from A downwards is simple

harmonic with centre of oscillationat y =0 or x = 2
the particle is S.H.M.
To find the greatest depth of the particle below O, we find y where % =0.

From(1), multiplying both sides by 2% and integrating, we get

2
L2V [P
[dt) =6~ om” =2
Att=0,x=0,i,e,,y=_ %, %:%: 2ag
Hence from (2), ¢, = 2ag + "Tm 2.
Hence from (2),
dy 2 A
L)) am 2
(dt) 2ag + T8 —mﬁ ..(3)

A d Sy
t the greatest depth below O, d—.)r, = 0 So, from 13_1, <

P= %(2@-&—"7'" 2) o (d)

b

782 Thus part of the motion of |

¢:
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ma2 2ma? 2
or, (x-_g—J = 08 alm?

/1 l 12 g
2mga 2ma?
2_<mga, _cmag
orE= Ty E T (5

If the greatest depth below Ois a cot? L g (= 0B)
2

thenx=a cotz% —a(=AB)
So from (5),

cot? le_a)z _ 2mga 21g 2m2ag
a 2 l acot 5 -d) = T

2 8
= 2m82 1028 = a2 cor28-1) = 2= 2mg| %3
2 2 2 oo
cot*z-1

2
1 2cosgsin% 1 2
=5me gy eyl B 7m8 tan“@.
2 2
If t, be the time from Oto A then t, = §= 2a |
g

Let £, be the time from A to B. Thenat x=0, ¢t =0,
and at x = AB =a(cot2g—l),t= ty.
From (3), we have, on taking 1= %mg tan20

dr

2
(ﬂ] =2ag + 2ag cot?0 - -i%tan%? y? = 2ag cosecf - —z‘ga-tanze ¥

= 'é% tan20[4a> cosec28 cot26 - y2]

or, dy _ }i tan6 /(2acosecOcot 6)2 — y2

dt 2a .

P 2a 2acosecBcot dy
or, [ dr = ,— cotf 2
Ir:o g . IF‘2“°°‘ 6 \(ancosecﬂcotﬂ)z —y2

o 7]
whenx=0,y=- Ln%a_ ==20 c0t°0 fad when = a(colz ETI)'
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y= a(cotz—g-- 1) _ 24 cot26, which on simplification becomes y =24 cosec cot)

y=2acosecBcot &

2a PN S

onh= ‘/—g-cote[sm 2acosec9cot8]}=_2mm29

= —zﬂcote-[ﬂﬂin’1 cosf)] = [|2a [z - B]cotd.
g 2 Ve

Hence time to attain the depth a cotz-g— below O is

Hth= \/—Zgz[l + (7 - 6) cotd].

Example 3.9.9. Two masses M and m are connected by a light elastic string of
natural length a and modulus of elasticity A, and the system is placed on a smooth
horizontal table with the string perpendicular to an edge just unstretched, M lying on
the table and m just having over. If the system be now allowed to move, prove that M

will leave the table after a time ¢ given by

Manl = Ag [%tz - 'I—zz—sin2 %tJ , where n? = —2—(]—\14—+ ’—ln—) )
Solution : Let AB(= a) be the natural length
of a light elastic string of modulus of elasticity A.
The string AB is placed on a smooth
horizontal table with the string perpendicular to an
edge.
A mass M is attached at the end A and a mas
m is attached at the end B, which is just hanging
over. Fig. 3.17
_ If the system is allowed to move then suppose the mass m falls through a
glit’/a)nce y=BD and the mass M moves through a distance x (= AC) at ;ime t (see fig.

If T be the tension of the string at time  then T = 2CD-AB _ 1Y ta—x—4

AB a
or,T=1y—;£ - (1)
Then equation of motion of the masses M and m are respectively
d%x |
MEE o7 " 2
o )

where ¢;, €3
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d2
o i
Subtracting (2) from (3), we have, by using (1)
d’ =0 _,_ _&(L 1
d12 =8 a\M + m (y —X)

2(y- 2

or, d—(ll,—x—) =g-n¥y-x) or d_zz =—nlg
dt dt

8 _A(1 1
where 2=y =X~ -7 and n? = ;(ﬁ+5)'

The general solution of the equation (4) is
Z='c; COS nt + ¢, sin nt

Initially, when r=0,x=0,y=0so thatz =~ 52-
n

dx _o=P
and =73 =0= dt,hence

d

&g

a

From (6) % = n[- ¢, sin nt + ¢, cos nt].

Using initial condition, we get

- £ =cjandc,=0.
n

Thus, from (6), we obtain

== % cosnt or,y—x= f;—(l ~cos nt)

n

T

d2x _ T _ A (y-
From (2), gﬁ_M—aM(y X)

- dix_ A8 (1_cosn) (by D)

"d? aMn?
A 1
Integrating, —’é—’t‘ =cy+ aMi 3 (r—; ol nr)

=0. 9 —0.Hencec,=0.
Att=0, i 0. Hence ¢

dx _ Ag _1g nt).
Therefore, -jfi———‘aMﬂ (f Pre
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we have

Integrating further,

Ag (12,1 cosnt
x=c3+aMn2(2t +n2cosn :

AL Th
—0 x= —_ %8 _ Thus we have
Atr=0,x=0,c3== "1

x= Agz
aMn

[%,2 +;'2-(cosnt—l)] - (8)

The time ¢ taken by the mass M to pass over the table is obtained by Putting

r=ain(8)andis given by
2,2 - 12 2 .2nt|
Ma’n _13(21 ——nzsm —2)

Example 3.9.10. A heavy particle is attached to the lower end of an elastic

string the upper end of which is fixed. The modulus of elasticity of the string is equa]

to the weight of the partic
its natural length a and is then
A'e

intime (& An :
xgume J;(2\/§+3). fo*

le. The string is drawn vertically down till it is four times
let go. Show that the particle will return to this point

Solution : Let OA(= a) be the natural length of an elastic f °
string of modulus of elasticity A(= mg) withend O fixd and a T
heavy particle of mass m is attached to the lower end A. The A I
end A is pulled vertially down to the point B such that OB = - I
4a. A
P
Then total extension of the string is AB = 3a. The end B Y. i
is then let go. Let at time 1, P be the position of the particle J d l '
such that AP = x. Then forces at P are tension T =mg £ in B
a
upward direction and the weight mg in downward direction Fig. 3.13
(See fig. 3.18).
The equations of motion is
d*x 42 2
mEE = mg - Lx _,_8 acy
a2 ~memT oLty =g-ox o d’—2=—§y ()

whcrcy:;_a‘

Muliiplyi i D and integrat '
plying equation (1) by 23 and integrating, we get

d 2
(d_{J =c-dyt o)

where ¢, is constant of integration,
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dy

2 =o0.

At ¢ = 0 (measured from B), x = 34, so y = 2a and dx _
dt

Hence ¢, = 4ag. Thus from (2), we obtain

2
| _8Bu2_ .2 dy
(dl) = ety ) = i g\/‘iaz—yz (3

negative sign is taken, since particle is moving in the direction of y decreasing.
If 1 be the time from B to A i.e. from y = 2a to y = — a then from (3),

2a
! _ jaf[a _—dy_ a sin'll. T
joldf = J;.[y:Za 402—)’2 = J;[ 2a - = .;_[E-‘-%]
_ ja.2n
== ¢ 3

From (3), the velocity with which the particle will reach the point A is obtained

by taking y =—4@ and is given by v =~ \/-fz:-\ﬁa. negative sign indicates that the

particle will gobeyond A when the string will become slack and so no tension exists.
2
3

The particle will move upto the point O’ against gravity such that 00’ = 5:? =59

Since, 00’ < 2a(= AA’), so before the string regains its natural length in its
ocity of the particle vanishes and hence the particle will then fall
Q’, under gravity upto the point A after which tension will begin
nd the height O’A with velocity at A equal to

upward motion vel

freely, from rest at
to act again and the particle will desce

f2 . -35"- g =+/3ag indownward direction, and this velocity is same as v, in magnitude

in the case of upward motion of the particle.
Thus the particle will reach the point B again and this downward motion will be

represented by the same equation (1).
_N3ag _ [3a

The time ¢, for the upward motion from AtoO’isgivenby s, = 2 P

From symmetry, the time of a complete oscillation, from B to O and back to B

2, + '2)52[\/%+\/%'2T”] = ‘E[zﬁ+531’-].

Example 3.9.11. A particle possesses simultaneously two S.H.M.‘s of the
n centre, their amplitude

same period along the same  straight line about a commo

11
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f the latter motion being a quarter of a Periog;

. d the phase 0
being a and ay3, an Jtant motion is simple harmonic of Ih
former. Show that the resultan € ofamp); Example 3.9.12. A particle : .
;gvamnseplt::: one-sixth of a period in advance of the first. Plityg, " particle is exccuting a simple harmonic oscillation of
3 itude @ under an attraction £ —
amplitu fon ==. If a small disturbing force % towards the
a .

2 time period of two S.H.M.’
tion : Let T = == be the common P .M. s alop " )
Solutio. 8 the centre be introduced (the amplitude being unchanged) show that the period is, to a

straight line about a commeon centre. first approximation, decreased in the ratio (1-&] 1
8u)

same
Then the displacement-time relation describing the two S.H.M.’s are
x =a COS( \/,L—[f + 81) el m‘p.\/u
) a— & —
and x=ay3 cos(\/;—lt + &) e — a LR
) £ Fig. 3.19
The phase of the first S.H.M is ¢ + —L and that of the second S.H.\ i '8 31
‘/’E g lxlia‘ mpa
X o D P A
t+ —Ez— According to the problem, . X
Jr Fig. 3.19(b)
- j__g - _EJI= + % Tog-g= % e Solution : In fig. 3.19(a), we have a case of free oscillation of a particle of mass
i .
g i ¢ munder the attraction ’"aﬂ towards the centre of oscillation O, x being distance of
From (1) and (2), on addition, we have ’ e particle at P from O at time 1,
) the particle a 0 attime 1.
x=x +x,=afcos \//.—lt(cos £ + Y3 cos &) —sin Jp 1 (sin & + /3 sin &)] 2
Then equation of motionis m dx__ .k,
=Acos(\[L1+¢) () dr? a
where Acose=acos &+ +3acos g Hence the time period is T, = 2::\[%_ (1)
and Asine=asin g + \[3asin¢ }
! 2 = (9) In fig. 3.19(b), we have a case of oscillation under attraction m_il{ towards O,

From (5), we have
mAx3

A= J[az +32242 \/ga2cos(ez -g )] =24 (by (3) together with a small disturbing force 3 towards O, the amplitude being
a

unchanged.

andan g SNE+Bsing, _ sing +\Beose,  (B+tane, an(Z Then the equation of motion is
- = =tan| -+¢,
cosey+y3cose,  cose -y3sing  1-\Btang, 3+ d? By mt
) x __ B A3 )
se=Z Tar T
Z+ey . @

i e s : dx . 1 :
and hence ¢ + 73__ o g NN Rl . g ) - Multiplying equation (2) by 2I and integrating we have
Th T | deV o B A ©)

us from (4), L. ‘ (_.) =_E2_2 x*+c
(4), resultant of two S.HM.’s is a S.HM of amplitude 24 and its | 24° 1

phase is lt Ty . .
6 h of a period in advance of the phase of the first S.H M Where ¢yis‘a constant of infogration,

Since ‘a’ is the amplitude of this motion also,
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N
dx

SO 1 = 0 where x = a. Therefore, ¢ = ya + %a. Then from (),

84 ADVANCED ANALYTICAL DYNAMICS

2
de\ _H,2_ 2y, A 4 a_H.o2 2 A
v(dt) a(a x)+2a3(a x*) a(a x).[1+2“a2(a2+x2)l

1
dx__ K [2_ 2 A 2, 2\
= dr ‘j; @ [1+2ua2 A )} =

negative sign is taken, since the particle is moving in the direction of x decreasin,

If ¢, be the time required from its position instantaneous rest at A to the centy
of force O, then we have from (4),

dx

Ua

Lodt =~ EJ.0=c:z
fipdr == J2 =

1
2
a? — x2 1+2)‘2 (a2+x2)}

- (&L )
T\ B Ix=0 Pl 2

(v A is small, we retain only linear term and neglect all other higher powers of )
_ ,g4 a__dx . A ag? — x2—2q2
= dx

H _IO \/a2 ~x2  4ua® '[0 \/a2 — x2

9 __dx A_(af2_2, _ A(e_ dx
LIO‘/az__x2+4‘ua2-[0 ? xdx Zujo\ﬁzz_xz}

=‘/E ( 5 [Sin‘i}a v A _|x[2 2 . ix|
m 2u aly * aua? aVa"—x +?sm P

0
_ |a Aln ., A
= 1-2 |12, A4 2\ _ |la;|, 3A
\/;{( 2#]2 8 2} . \/;2(1 @J‘
Hence, from Symmetry, time-period of the second oscillation is
| T2=4II=ZEJE( _._SA )
H 8

Th T 3A
usT,: T, = [I_E] : 1, to a first approximation.
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