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\% Cosets and Lagy ange’s Theorem '

It is amazing to know that Lagrange’s the
ra, a result which j
algebra, dr Su ';’Vthh 18 of paramoypt Importance in the theory of finit
o it - nite groups
was D -y S 10 1770, mych before the forma] inception of t}
group! Indeed, this was a period when emine S

. nt mathematicians a
busy trying to find a possible general formy allover Europe were

la (aptly kno I -
for the roots of a general polynomia] equation ¥ mown as solution by radicals)

(of degree n, say), explicitly ;

] : ) ) , explicitly in terms of
its coefﬁments. After Srldharacharya’s ancient solution for quadratic in 750 AD. the
stage was set by H. Cardano (1501-1576) )

with such a solution for a cubic equati
. : quation
a,nd- then by- L. Ferrarl‘ (1526-1565), one of his students, who successfully did it for
a biquadratic. How nice it woulg be to have a general formula® for the roots of

' _ ight perhaps reduce to these particular cases on
putting the respective values of 1, — 2,3,4 etc.! In this atmosphere, J.L. Lagrange

(1736-1813) investigated the effects of permutations of the roots of a polynomial
equation. Though he did not know it, his works® (1770)

concept of permutation ‘groups in mathematics, the pat

orerm,

an nth degree polynomial, which m

paved the path towards the

h that was appreciated only
after almost 60 years by the genius of Galois, who in 1829 defined a finite group as
a group of permutations. In this section, we shall discuss Lagrange’s theorem and
relevant results.

%nition 5.3.1. Let H be a subgroup of a group G. If a € G, the subset o H =

{ah|h € H} is called a left coset of H in G. Similarly, Ha = {ha|h € H} is called
-a right coset of H in G. '
Tight cose;

Observe that eH = H = He. Hence H is a left and right coset of itself in G.

xamplé 5.3.2. Let G = {1, a,b, ab} be the Klein’s four-group. Then o(a) = o(b) =
2, ab = ba. In this group, H = {1,a} isa sﬁbgroup and 1H = {1,a},aH = {a,a*} =
{a,1} = {1,a}, bH = {b,ba} = {b,ab}, abH = {ab,aba} = {ab, a®b} = {ab,b} are
the left cosets of H in G.
ﬁi{owever, a result to the effect that such a dream is not to be fulfilled for equations of degree

5 is credited to Neils Heinrich Abel(1802-1829) of Norway. The corresponding general theory for

equations of a higher degree is due to Galois. ' .

5The famous [B,agrangi’s theorem, in his contemporary terminology was as follows: the number of
distinct polynomials obtained from a polynomial in n variables by applying all possible permutations
In modern day terminology of group theory it says : the order
of that group, which was actually formulated by

of the variables is a factor of n!
of a subgroup of a finite group divides the order
Jordan in 1870.
D
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\\/;/ample 5.3.3. Consider the group (Z,+). Let H = 5Z = {5n|n e A Hi
subgroup of the group (Z,+). Now the left cosets of H in Z are given by r, 4. H

alln € Z,i.e., n+5Z for n =0,£1,+2,.

Any integer n is of the form 5m +r, wherer=0,1,2,3 or 4. Hence n+ 57
5m + 1+ 5Z = r+ 5m + 5Z = r + 5Z. Hence the left cosets of H = 57 in 7, o,
0+5Z,1+5Z,2+ 5Z,3 + 57,4 + 5Z.

ﬁample 5.3.4. Consider the symmetric group S3 = {e, (12), (13), (2 3),
(123),(132)}. In this group, H = {e,(12)} is a subgroup. The left cosets of i
53 are

eH = H
12)H = {(12),(12)(12)} = {(12),¢}

@HH = {(23),23)(12)} = {(23),(132)}
(I3)H = {(13),(13)(12)} = {(13),(123)}
(123)H = {(123),(123)(12)} ={(123),(13)}
(132)H {(132),(132)12)} = {(132),(23)}.

Notice that any two left cosets of H in S3 are either disjoint, e.g., (23)H and

(13)H or, two left cosets are equal, e.g., (23)H and (132)H. Now all the distinct
left cosets of H in S35 are as follows: |

H = {e,(12)}; @3)H = {(23), 132)}; A19)H = {(13), 123)}.

Notice that S3 = HU(23)H U (13)H and |H| = |(23)H| = |(13)H]|.
Next we compute all the right cosets of H in S3. The right cosets of H in Sj are
Ha for all a € S3.

He = H
H(12) = {(12),(12)(12)} ={(12),€}
H(23) = {(23),(12)(23)} = {(23),(123)}
H(13) = {(13),(12)(13)} ={(13), (132)}
H(123) = {(123),(12)(123)} = {(123),(23)}

12)
H132) = {(132),(12)(132)} = {(132),03)}

For right cosets also, we find that, any two right cosets are either equal or disjoint:
All the distinct right cosets of H in S3 are as follows:

H = {e,(12)} H13) = {(19), (132)); H@3) = {(23), (129)).
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53, COSETS AND LAGRANGE’S THEOREM | 171

Here also 53 = HUH(13) U H(23) and |H| = |H(13)| = |H(23)|. But we note -
that & left coset aH may not be equal to the corresponding right coset Ha, e.g.

In the above example we see that all left cosets and right cosets of H in S3 have
the same number of elements, viz., 2. Also there are the same number of distinct left
cosets of H in Ss, as of distinct right cosets, viz., 3. We now prove in the following
theorem that these results hold in general for left aﬂd right cosets in any group.

\é%)rem 5.3.5. Let'H be a subgroup of a group G and let a,b € G.
ﬁ/. oH = H if and only ifa € H.
ﬂij Ha = H if and only if a € H.
(i#f) oH =bH if and only if a"'be H.
(i) Ha=Hb if and only ifba™* € H.
) EBither aHNbH =0 or aH = bH.
J;{) Either HaN Hb =0 or aH = Hb.

Proof. (i) Suppose aH = H. Then a = ae € aH = H. Conversely, suppose a € H.
Then for any h € H, h = eh = aa"lh € aH implies that H C aH. Since H is'a
. subgroup and a € H, we find that aH = {ah|h € H} C H. Hence H=aqaH.

(ii) Proof is similar to (i). '

(iii) Suppose aH = bH. Since b = be € bH = aH, there exists h € H such that
b= ah for some h € H. Then a~1b = h € H. Conversely, suppose a~1b € H. Hence
bH = aa~1bH = a(a—'bH) = aH, since by (i), a=b € H implies a~'bH = H. :

(iv) Proof is similar to (iii). S

(v) If aH NbH # 0, there exists z € aH NbH. Let o = ahy = bhs where
hi,hy € H. Then a~'b = h1hy* € H, so aH = bH by (iii).

(vi) Proof is similar to (v).

Q%llary 5.3.6. Let H be a subgroup of a group G. Then {aH |a.€ G} forms a
partition of G.

O

Proof. Let P = {aH |a € G}, i.e., P is the set of all left cosets of H in G. By
Theorem 5.3.5, for all oH,bH € P, either aH NbH = D or aH = bH. Now for all
¢ € G,aH C G and so J,cqoH CG. Again, if a € G, then a € aH and hence

GC U, ccaH. So we find that G = UzeqaH- Consequently, P is a partition of
G. |

Scanned with CamScanner



172 CHAPTER 5. SUBGROUPS

%worem 5.3.7. Let H be a subgroup of a group G. If a € G, then [aH| < || <
|Hal.

Proof. To show that |H| = |aH|, we show that there exists a bijective mapping (¢ I
onto aH. Define f : H — aH by f(h) =ah forall h € H. Let h,h1 € H. Sypp,,
f(h) = f(h1). Then ah = ah; which implies that A = hy (by cancellation Property)
and so f is one-one. To show f is onto, let ah € aH. Then ah = f(h) and henc, f
maps H onto aH. Similarly, we can show that there exists a bijective mapping of
H onto Ha. ' 0

lj?(eorem 5.3.8. Let H be a subgroup .of a group G. Then |L]| = |R|’. where
L (resp.R) denotes the set of all left (resp. right) cosets of H in G.

Proof. To establish this, we need to show the existence of a bijective function from
L onto R. Define f : £ — Rby f(aH) = Ha™! for all aH € L. Observe that Hg"!
is a right coset of H in G and hence Ha~! € R. Now, we show that aH = bH if and
only if Ha~! = Hb~!. Suppose aH = bH. Then a~'b € H. Hence b= (a 1)1 e i
and so by Theorem 5.3.5(iv), we have Ha~! = Hb~!, :
Conversely, assume that Ha~! = Hb~!. Then by Theorem 5.3.5(iv), b1 (a"1)1 ¢
H,ie., b 'a € H and so a=1b = (b7la)™! € H. Then by Theorem 5.3.5(iii),
aH = bH. Thus we find that f is well-defined and one-one. Since for all Ha € R,
Ha = H(a™')™! = f(a™'H) and a™'H € L, f is onto. Thus f is a one-one and

onto mapping. - O

-geﬁnition 5.3.9. Let H be a sﬁbgroup of a group G. Then the number of distinct
left (or right) cosets of H in G, written [G : H], is called the index of H in G.

By Theorem 5.3.8, the number of distinct left cosets and the number of distinct
right cosets of a subgroup H of a group G are the same. Thus, [G : H] is well-defined.

\y{eorem 5.3.10. (Lagrange) Let H be a subgroup of a finite group. Then the
order of H divides the order of G. In particular,

6] =[G : H)|H].

Proof. Since G is a finite group, [G : H] is finite. Let [G: H]=r. This implies
‘that there exist r distinct left cosets a, H,a,H,...,a H of H in G. Since distinct
left cosets are mutually disjoint, we have '

r 5 o
6= |U eH| = 0, H| + |, H| + .. + o, H]
i=1
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= Iﬂ| + Ifi-rl- ceo Tt |HL (by Theorem 5.3.7, la,H| = |H|)
T times
Hence the theorem. . K

Note that by virtue of Lagrange’s theorem, we have a useful formula to calculate
the index of a subgroup H in a finite group G. Indeed,

|H]|
Lagrange’s theorem is a very useful theorem in finite groups. In the study of

finite groups, we need this theorem most of the times. Let us now show some
pplications of this theorem. :

_
| llary 5.3.11. Every group of prime order is cyclic.
ﬂﬁ*-h—

Proof. Let G be a group of prime order say p. Since p > 1, G has an element a #e.
Let H be the subgroup (a) = {a"|n € Z}. By Lagrange’s theorem, |(a)| divides p.

Hence |(a)| = 1 or p. Since a # e, |(a)| # 1 and so |(a)] = p. Now (g} C G and
|(a)| = |G| = p. Hence, G = (a). This shows that G is a cyclic group. O

Since every cyclic group is commutative, the above corollary also tells us that

every group of prime order is commutative.

-—

ﬁollary 5.3.12. Let G be a group of finite order n and a € G. Then o(a) divides

n ond o™ = e.

Proof. Let H = (a). Then H is a cyclic subgroup of G and |H| = o(a). By
Lagrange’s theorem, |H| divides |G|. Hence o(a) divides n. Let o(a) = m. Then
n =mk for some integer k. Now a™ = e and hence a” = a™ = (a™)* =e. 0

Our next result, known as Fermat’s little theorem, is a result from number
theory, which has been proved to be a powerful tool in Cryptography, the modern
wodmg and decoding messages. We show that this result can be proved

by Laz Largange’s theorem.

ﬂ eorem 5.3.13. (Fermat) Let p be a prime integer and a be an integer such
that p does not divide a. Then aP~! = 1(modp).

L
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Proof. For the prime integer p, Up = {[a] € Zp| ged(a,p) = 1}- The:n;Up = Zp\{[()]}
is a group of order p—1. Let @ be an integer such that p does not divide a. They o

is a nonzero element of Z, and so [a] € Up. Thus by Corollary 5.3.12, [a]P~! < 1,

i.e., [aP71] =[1]. Hence aP~! = 1( modp). - 0

Let H and K be two subgroups of a group G. If H and K are both finite, the,

|HK]| is finite but H K need not be a subgroup of G and so [HK | need not divige |
|G|. However, with the help of Lagrange’s theorem we can determine |HK|. Thig

is a very useful result and we will use it very effectively in the sequel. In the next

theorem, we determine |H K| when H and K are both finite.

\’yéorem‘5.3.14. Let H and K be finite subgroups of a group G. Then

H| K]

HK| = g

Proof. Let A= HNK. Since H and K are subgroups of G, A is a subgroup of G ;;1‘1d
so A is also a subgroup of H. By Lagrange’s theorem, |A| divides |[H|. Let n = il'
Then [H : A] = n and so A has n distinct left cosets in . Let {m1A,z,4,...,z,4}

be the set of all distinct left cosets of A'in H. Then H = i, a:,.‘A. Since A C K,

it follows. that . .
HE = (| J=4)K = =K.
i=1 1=1

We now show that z,K Nz, K = 0 if i # j. Suppose o,K Nz, K # 0 for some i #
Then z,K = z,K. Thus, z'z; € K. Since z] 'z, € H, we have z;'z; € A and
so z;A = z.A. This contradicts the assumption that z, 4,...,z A are all distinct
left cosets. Hence z, K, ...,z K are distinct left cosets of K. Also, |[K| = |z;K| by
Theorem 5.3.7, for all i = 1,2,...,n. Hence, |

HIK] _ |H|K]|
| A |[HN K|

|HK| = |z, K| +... + |z, K| = n|K]| =

O

We conclude this section by showing that the converse of Lagrange’s theorem is
not true in general. We have shown in a finite cyclic group of order n that, for each
divisor d of n, there exists a subgroup of order d. Hence the converse of Lagfa'nge,s
theorem holds in a finite cyclic group. Now, we show that there are groups in which
the converse of Lagrange’s theorem does not hold.
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5.3. COSETS AND LAGRANGE’S THEOREM 175

Consider the symmetric group Ss. In this group, the set A4 of all even per-
mutations is a subgroup of order 12. Let us show that A4 has no subgroup of
order 6. Suppose, on the contrary that A4 has a subgroup H of order 6. Now
(123),(132),(124),(142),(234),(243),(134), and (143) are all even permuta-
tions and hence these are all members of A4. Since |H| is 6, H cannot contain all
these 3-cycles. Let a = (abc) be a 3-cycle such that o ¢ H. Now o(a) = 3. Hence,

= {e,a,a?} is a subgroup of A4. Note that o? = o~ !. Hence HNK = {e}.

Then,
[H||K| _ 6
HE| = Trag) = P
But as HK C Ay, this contradicts the fact that |A4| = 12. Consequently, A4 has no
subgroup of order 6. So we find that the converse of Lagrange’s theorem does not

hold in Ajy.
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