Subject: Chemistry (Hons.)

Semester: 4

Name of Teacher: Dr. Prasenjit Pandey

(Mob.: 9804852580, email: ppchem@gmail.com)

Topic: Foundation of Quantum Mechanics - 2

[Based on the class-lectures, here is the 2^{nd} installment of home-assignments. The students must go through all the assignments. The students are advised to remain in contact for any type of academic discussion.]

1. The wavefunction corresponding to a freely moving particle can be represented as: $\psi = N \cdot e^{ikx}$. Check whether the wavefunction is an eigenfunction of linear momentum. Using the wavefunction find out the value of the commutator: [x, p_x]. For a particular value of k comment on the position of the particle.

Hints:

Eigenvalue equation: $\hat{A} \psi = a \psi$

Linear momentum operator: $\frac{\hbar}{i} \frac{\partial}{\partial x}$

Keep in mind 'uncertainty' While commenting.

2. Using any arbitrary function (of x) check whether $\frac{d}{dx}$ is a linear operator. Is 'taking a square root' a linear operation?

Ans.: $\frac{d}{dx}cf(x)=c\frac{d}{dx}f(x)$, where c is a constant.

Thus, $\frac{d}{dx}$ is a linear operator. 'Taking square root' is nonlinear.

.....

Operators in quantum mechanics correspond to respective observables in classical mechanics. If eigenvalue equation ($\widehat{A}\psi=a\psi$) is satisfied, the 'eigenvalue' a corresponds to the value of the observable defined by the operator (Take a reference of problem #1). It is not necessary that eigenvalue equation would always be satisfied (see problem #3).

......

3. The wavefunction corresponding to a particle moving within (otherwise free – no potential energy) 1-dimentional box can be represented as: $\psi = N \sin(kx)$ where N and k are independent of x. Find out whether the function is an eigenfunction of linear momentum.

Hints: The answer is no. Thus, there is no 'specific' linear momentum! (but a distribution). If not specific, can we have any estimate of average linear momentum within a certain length of the box? The answer is yes. It is called the 'expectation value'.

......

Expectation value:

When large number of measurements are carried out to evaluate an observable corresponding to the operator \widehat{A} on a system (of corresponding wavefunction ψ), the expectation value (average outcome) would be:

$$\langle A \rangle = \frac{\int \psi^* \widehat{A} \psi \, d\tau}{\int \psi^* \psi \, d\tau}$$

.....

Hermitian operator:

A hermitian operator (say \hat{A}) is such that $\int \psi_1^* \hat{A} \psi_2 d\tau = \int (\hat{A} \psi_1)^* \psi_2 d\tau$

- Hermitian operators obey eigenvalue equation.
- The eigenvalues of a hermitian operator are real.

Proof:

 $\hat{A}\psi = a\psi$ (eigenvalue equation)

$$\Rightarrow \psi^* \widehat{A} \psi = \psi^* a \psi$$
 (multiplying both sides by ψ^*)

$$\Rightarrow \int \psi^* \widehat{A} \psi \, d\tau = a \int \psi^* \psi \, d\tau \qquad (i)$$

Again, $(\widehat{A}\psi)^* = a^*\psi^*$ (taking complex conjugate of both sides of the eigenvalue equation)

$$\Rightarrow (\widehat{A}\psi)^*\psi = a^*\psi^*\psi$$
 (multiplying both sides by ψ)

$$\Rightarrow \int (\widehat{A}\psi)^* \psi \, d\tau = a^* \int \psi^* \psi \, d\tau \qquad (ii)$$

Now, from the definition of hermiticity, the left hand sides of equations (i) and (ii) are equal.

Thus,
$$a \int \psi^* \psi d\tau = a^* \int \psi^* \psi d\tau$$

$$\Rightarrow a = a^*$$
 as $\int \psi^* \psi \, d\tau \neq 0$

Eigenfunctions with different eigenvalues of a hermitian operator are orthogonal.

Proof:

$$\hat{A} \psi_1 = a_1 \psi_1 \tag{iii}$$

$$\widehat{A}\,\psi_2 = a_2\,\psi_2 \qquad \qquad \text{(iv)}$$

From equation (iii), $(\widehat{A}\psi_1)^* = a_1^*\psi_1^*$

$$\Rightarrow \psi_2 (\widehat{A} \psi_1)^* = \psi_2 a_1^* \psi_1^*$$
 (multiplying both sides by $\widehat{A} \psi_2 = a_2 \psi_2$)

$$\Rightarrow \int \left(\widehat{A}\psi_1\right)^* \psi_2 d\tau = a_1^* \int \psi_1^* \psi_2 d\tau = a_1 \int \psi_1^* \psi_2 d\tau \quad (\text{ as } a_1 = a_1^*)$$
 (v)

Again, $\psi_1^* \hat{A} \psi_2 = \psi_1^* a_2 \psi_2$ (multiplying both sides of equation (iv) by ψ_1^*)

$$\Rightarrow \int \psi_1^* \hat{A} \psi_2 d\tau = a_2 \int \psi_1^* \psi_2 d\tau \tag{vi}$$

From the definition of hermitian operator, the left hand sides of equations (v) and (vi) are equal.

Thus,
$$a_1 \int \psi_1^* \psi_2 d\tau = a_2 \int \psi_1^* \psi_2 d\tau$$

$$\Rightarrow (a_1 - a_2) \int \psi_1^* \psi_2 d\tau = 0$$

$$\Rightarrow \int \psi_1^* \psi_2 d\tau = 0 \text{ as } a_1 \neq a_2$$

Complete set of eigenfunctions:

Any arbitrary function (say Ψ) can be expanded as a linear combination of all the eigenfunctions (ψ_i) of an operator. All the eigenfunctions taken together constitute complete set of eigenfunctions.

$$\Psi = \sum_{i} c_{i} \psi_{i}$$
, c_{i} are the coefficients.