
Course Material on Magnetostatics

Lorentz force

Force due to a magnetic field ~B(~r) on a charged particle (Q) traveling with velocity ~v is
given by :

~Fmag = Q(~v × ~B(~r)) (1)

This obviously means that the force is always perpendicular to the direction of motion.
Hence this force does no work :

dW = ~F .d~l = Q(~v × ~B).d~l = Q(~v × ~B).~vdt = 0 (2)

This means that the kinetic energy of the particle does not change. Thus the |~v| does not
change. Thus under this force only the direction of the particle changes. As an example if
~v = vî and ~B = Bĵ then ~v× ~B = vBk̂. This also means that in a constant magnetic field the
particle will under go motion in a circle in the plane orthogonal to the direction of magnetic
field. Thus the Centripetal force is provided y the magnetic force. Hence:

mv2

R
= QvB (3)

The radius of the circle is then given by :

R =
mv

QB
(4)

The time period of this circular motion is then given by:

2πR

v
= 2π

m

QB
(5)

Thus the trajectory of the particle in this case is given by :

~r(t) = R(cos(
QB

m
t+ φ)̂i+ sin(

QB

m
t+ φ)k̂) (6)

As a generalization let us consider the case where ~v = vperpî + vparaĵ, where we have the

component of velocity vpara which is parallel to ~B. There is no force due to this component.
The trajectory of the particle due to this is then given by :

~r(t) = vparatĵ +
mvperp
QB

(cos(
QB

m
t+ φ)̂i+ sin(

QB

m
t+ φ)k̂) (7)

The above cyclic motion in a plane is called cyclotron motion while the trajectory in the
later case is that of a Helix. Let us look at the general case where a charged particle is both
under an electric and magnetic field. The force in that case is the Lorentz force:

~FLorentz = Q( ~E(~r) + ~v × ~B(~r)) (8)

1. Given a constant electric field Ek̂ and a constant magnetic field Bî , find the trajectory
of a charged particle which is at rest at origin at time t = 0.
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Currents

For dQ charge flowing through a point P in time dt the total current flowing through the
point is given by :

I =
dQ

dt
(9)

Now let us assume that charge is smeared on a one dimensional wire, and dl length carries
dQ charge. This charge moves through point P in time dt. Hence this charge segment has
velocity v, in direction of the flow. Thus the magnitude of the current can be written as :

I =
dQ

dt
=
dQ

dl

dl

dt
, λ =

dQ

dl
(10)

Using this the force on the segment of the wire can be written as:

~F =

∫
(~v × ~B)dQ

=

∫
(~v × ~B)

dQ

dl
dl

=

∫
λ~v × ~B)

dQ

dl
dl

=

∫
(~I × ~B)dl (11)

Now the charge can also be smeared on a two dimensional surface as well. From which we
can define surface current density :

~K =
dQ

da

d~l

dt
= σ~v, σ =

dQ

da
(12)

while if the charge is smeared over a 3 dimensional region and the current flows through a 3
dimensional wire, we define volume current density:

~J =
dQ

dτ

d~l

dt
= ρ~v, ρ =

dQ

dτ
(13)

In these two cases, the force on a corresponding current carrying element (area and volume
respectively) is given by :

~F =

∫
( ~K × ~B)da and ~F =

∫
( ~J × ~B)dτ (14)

For example if we have a uniform current I flowing through a cylinder of radius a, then the
volume current density is given by

~J =
I

πa2
ẑ (15)
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here ẑ is the direction vector in direction of the axis of the cylinder. Note that this means
that the total current flowing through the cylinder can be written as:

I = ~J.ẑπa2 =

∫ a

0

∫ 2π

0

ρ dρ dφ ẑ. ~J =

∫
d~a. ~J (16)

here d~a = ρdρdφẑ. Using this one can compute the total current flowing through a closed
surface S :

ITotal =

∮
S

~J.d~a (17)

where the integral denotes over the closed surface. Using Gauss’s divergence theorem we can
write : ∮

S

~J.d~a =

∫
V

~∇. ~J dτ (18)

Now since charge is conserved this must be negative of the rate of change of total charge
included in the volume enclosed, i.e. :

ITotal = −dQ
dt

= − d

dt

∫
V

ρdτ = −
∫
V

∂ρ

∂t
dτ (19)

where we have taken the derivative inside the integral, and since the integration variables
are dummy i.e. dτ = dx′dy′dz′ and the volume charge density ρ(x′, y′, z′, t) is a function of
these variables for a fixed coordinate system. Hence:∫

V

~∇. ~J dτ = −
∫
V

∂ρ

∂t
dτ (20)

But this being true for any arbitrary volume taken, we must have the integrands same. Thus:

~∇. ~J = −∂ρ
∂t

(21)

Steady state is defined where there is no accumulation/depletion of charge in a given volume

element, i.e. the ρ does not explicitly change with time. Thus ~∇. ~J = 0.

Biot-Savart Law

This gives us a formula to calculate the magnetic field at a point ~r for a given current
distribution :

~B(~r) =
µ0

4π

∫
I d~l × r̂

r2
(22)

where ~r is the displacement vector from the element d~l to the point ~r where the magnetic
field is to be calculated. The element d~l traverses along the path via which the steady current
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I flows. Hence the information about the geometry of the current configuration is encoded
in this integral as well.
2. Find the magnetic field at a point, with shortest distance s from an infinite wire carrying
current I.
3. Find the magnetic force per unit length on two parallel wires carrying current I1 and I2

and distance s apart from each other.
4. Show that the magnetic field at a point on the axis of a circular loop (radius R) and at
height z from the plane of the loop is given by :

µ0I

2

R2

(R2 + z2)3/2
ẑ (23)

5.We can look at the case of a solenoid, which is a cylinder with wires wound around it. Let
the windings per unit length be n and let the current flowing through each wire be I. This
means the total number of coils in the interval dz along the axis of the cylinder is ndz and
thus total current flowing through these coils is = Indz. Thus one can imagine the solenoid
as a superposition of several circular loops each carrying current Indz. Then if the radius of
the solenoid is a, each of these segments contribute a magnitude to the magnetic field given
by :

dB =
µ0nIdz

2

a2

(a2 + z2)3/2
(24)

making the change of variables tan θ = a
z
, where θ is the angle subtended at the point on the

axis of the cylinder where the magnetic field is measured, with respect to the an element of
the elementary circular loop considered. Thus :

dz = −acosec2θ dθ,
1

(z2 + a2)3/2
=

sin3 θ

a3
(25)

Plugging this in and integrating, we have :

B =

∫ θ2

θ1

a2 sin3 θ

a3 sin2 θ
(−adθ)

= −µ0nI

2

∫ θ2

θ1

sin θdθ =
µ0nI

2
cos θ

∣∣∣∣θ2
θ1

(26)

If we have an infinite solenoid then θ2 = 0 and θ1 = π, and hence we obtain :

B = µ0nI (27)

the direction is along the axis of the cylinder i.e. in ẑ direction.
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Ampere’s Law

If we look at the magnetic field due to an infinite long wire, and calculate the line integral
of it around a circular loop, then we have:∮

~B.d~l =

∫
µ0I

2πs
φ̂.d~l =

∫ 2π

0

µ0I

2πs
φ̂.s dφφ̂ = µ0I (28)

From this we obtain the Ampere’s law, which is valid for other current configurations as
well, which states that the closed loop integral of the magnetic field is equal to µ0 times the
total current passing through the loop .∮

~B.d~l = µ0Ienclosed (29)

We can go further and write this in differential form using Stokes theorem :∮
~B.d~l =

∫
S

(~∇× ~B).d~a = µ0Ienclosed = µ0

∫
S

~J.d~a (30)

since this is true for any arbitrary area S taken, we must have the integrands to be same :

~∇× ~B = µ0
~J (31)

which is th differential form of the Ampere’s law. As an analogy to electrostatics we observe
that in that case we have Coloumb’s law and Gauss’s divergence theorem, and here we have
Biot-Savart’s law and Ampere’s law.
6. Find the magnetic field due to suface current flowing in the x − y plane and given by
~K = Kî, using Ampere’s law.
7. Find the magnetic due to a cylindrical wire of radius a for total current I flowing through
it, if
a) Current is flowing on the surface of the cylinder.

b) A volume current density flows in the cylinder ~J = k sẑ, where s is the distance from the
axis of the cylindrical wire.

Divergence and Curl of ~B

We calculate the Divergence here directly from Biot-Savart’s law. The most generic form of
the magnetic field in terms of the volume current density is given by:

~B(~r) =
µ0

4π

∫
V

~J(~r′)× r̂

r2
dx′ dy′ dz′ (32)

where~r = ~r−~r′. Directly applying the divergence operator, but noting that it is with respect
to the coordinates x, y, z and not with respect to the coordinates at which the source is i.e.
x′, y′, z′. Thus :

~∇. ~B =
µ0

4π

∫
V

~∇.
( ~J(~r′)× r̂

r2

)
dx′ dy′ dz′ (33)
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Using the formula for the divergence on curl of two functions :( ~J(~r′)× r̂

r2

)
=

r̂

r2
.(~∇× ~J(~r′))− ~J(~r′).(~∇× r̂

r2
) (34)

The first term is zero since ~J is a function of ~r′ here while we see that :

~∇× r̂

r2
= −~∇× ~∇|~r|−1 (35)

Hence Curl of gradient of scalar. This is also zero , assuming commutativity of partial
derivatives. Thus we find that :

~∇. ~B = 0 (36)

Any where in space. As a consequence of this we can use Gauss’s divergence theorem on
this to obtain that there is no- magnetic monopoles/ charges :∫

V

~∇. ~Bdτ =

∫
S

~B.d~a = 0→ total magnetic charge contained in the volume (37)

Since this is true for any arbitrary volume V taken. Next we check the curl of the magnetic
field :

~∇× ~B(~r) =
µ0

4π

∫
V

~∇×
( ~J(~r′)× r̂

r2

)
dx′ dy′ dz′ (38)

where one must remember that ~∇ is with respect to the point ~r. Using the vector identity:

~∇× ( ~A× ~B) = ( ~B.~∇) ~A− ( ~A.~∇) ~B + ~A(~∇. ~B)− ~B(~∇. ~A) (39)

we have: (
~r − ~r′

|~r − ~r′|3
.~∇
)
~J − ( ~J.~∇)

~r − ~r′

|~r − ~r′|3
+ ~J

(
~∇. ~r − ~r

′

|~r − ~r′|3

)
− ~r − ~r′

|~r − ~r′|3
(~∇. ~J) (40)

remembering that ~J here is a function of ~r′, while the ~∇ acts on x, y, z, the first and last
term become zero. Thus we have:

−( ~J.~∇)
~r − ~r′

|~r − ~r′|3
+ ~J

(
~∇. ~r − ~r

′

|~r − ~r′|3

)
(41)

Now note that :

~∇.
(

~r − ~r′

|~r − ~r′|3

)
= 4πδ(3)(~r − ~r′) (42)
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While :

−( ~J.~∇)
~r − ~r′

|~r − ~r′|3
= ( ~J.~∇′) ~r − ~r′

|~r − ~r′|3
(43)

Where ~∇′ is the gradient operator with respect to the coordinates x′, y′, z′. This is because
if we have a function of seperation of two variables f(x− x′) then we have:

∂

∂x
f(x− x′) = − ∂

∂x′
f(x− x′) (44)

Plugging this in the expression for ~∇× ~B we have:

µ0

4π

∫
V

(
~J4πδ(3)(~r − ~r′) + ( ~J.~∇′) ~r − ~r′

|~r − ~r′|3

)
dx′ dy′ dz′

= µ0
~J +

µ0

4π

∫
V

( ~J.~∇′) ~r − ~r′

|~r − ~r′|3
dx′ dy′ dz′ (45)

Now the last term can be written in components. Looking at the x−component :

i
µ0

4π

∫
V

( ~J.~∇′) x− x′

|~r − ~r′|3
dx′ dy′ dz′ (46)

This can again be written as:

i
µ0

4π

∫
V

[
~∇′.
(
x− x′

|~r − ~r′|3
~J

)
− x− x′

|~r − ~r′|3
~∇′. ~J

]
dx′ dy′ dz′ (47)

The second term is zero for steady flow of current since ~∇. ~J = 0. While the first term can
be written using Gauss divergence theorem:

i

∮
S

x− x′

|~r − ~r′|3
~J.d~S ′ (48)

Now this surface can be taken as large as possible, enclosing all possible current configurations
contributing to the magnetic field at the particular point. But one can always assume that
there is no current source at infinity. Hence if we take boundary of the volume to infinity
i.e. the suface that enclosing it to infinity, then ~J → 0 at infinity. Thus we can drop this
term and all the other components which are identical under the replacement of x − x′ by
y − y′ and z − z′. Thus we obtain by direct computation :

~∇× ~B = µ0
~J (49)

The Magnetic Vector potential

If we remember electrostatics, we had ~∇ × ~E = 0 This meant we could write ~E = −~∇Φ,
where Φ was our electrostatic potential. Similarly we have here ~∇. ~B = 0. This means we
can write ~B = ~∇× ~A, since we have :

~∇.(~∇× ~A) = 0 (50)
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This vector ~A is called the magnetic vector potential. Additionally note that the magnetic
field ~B remains same under the transformation ~A → ~A + ~∇λ, where λ is a scalar function,
as:

~∇× ( ~A+ ~∇λ) = ~∇× ~A+ ~∇× ~∇λ (51)

This is called a Gauge transformation and shows the freedom in defining the vector potential
~A. Now from the equation for curl of ~B we have:

~∇× ~B = ~∇× (~∇× ~A) = ~∇(~∇. ~A)−∇2 ~A = µ0
~J (52)

But we can use the Gauge freedom to choose ~∇. ~A = 0. To see this let us start with the
above equation with a vector potential ~A′ with non zero divergence:

~∇(~∇. ~A′)−∇2 ~A′ = µ0
~J (53)

Now make a gauge transformation : ~A′ = ~A+ ~∇λ. Plugging this in we have :

~∇(~∇. ~A′)−∇2( ~A+ ~∇λ) = µ0
~J (54)

choosing λ such that :

~∇(~∇. ~A′) = ∇2~∇λ = ~∇∇2λ (55)

where in the last step we have interchanged ~∇ and ∇2, giving :~∇(~∇.( ~A′− ~∇λ)) = ~∇(~∇. ~A) =

0, which is the condition on the new vector potential ~A. The choice on λ is then :

∇2λ = ~∇. ~A′ (56)

This is Poisson’s equation and hence:

λ = − 1

4π

∫ ~∇ ~A′(~r′)
|~r − ~r′|

dx′ dy′ dz′ (57)

Where we have used ∇2|~r − ~r′|−1 = −4πδ(3)(~r − ~r′). Thus starting from a ~A′ we have

constructed ~A whose divergence is zero by appropriately choosing λ, utilizing the gauge
freedom. This means :

∇2 ~A = −µ0
~J

⇒ ~A =
µ0

4π

∫ ~J(~r)

|~r − ~r′|
dx′ dy′ dz′ (58)

We must add a discussion here about the gauge transformation λ. Observe first:

~∇. ~B = ~∇.(~∇× ~A′)

= ~∇.(~∇× ( ~A+ ~∇λ))

= ~∇.(~∇× ~A) + ~∇.(~∇× ~∇)λ (59)
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It might seem that the last term is always zero but that might not be the case. Using the
εijk tensor we can write the last term as follows:

εijk∂i∂j∂kλ (60)

which we can verify explicitly. Note that here i, j, k runs over 1, 2, 3 which means x, y, z
components. More over the epsilon tensor is defined as ε123 = 1 and it is anti-symmetric
under any interchange of indices : εijk = −εikj etc. This totally defines all the components
of the tensor. The question is that whether the above is always zero. To see an example we
look at the easier 2− dimensional case :

εij∂i∂jλ (61)

Let us integrate the above over an area :∫
S

dx1dx2(∂1∂2 − ∂2∂1)λ (62)

Please understand that you can should not use commutativity of derivatives blindly, and put
the above to zero. Now let M = ∂2λ and L = ∂1λ :∫

S

dx1dx2

(
∂M

∂x1

− ∂L

∂x2

)
(63)

Using Green’s Theorem in the plane :∮
C

(Ldx1 +M dx2) (64)

where the integral is over the closed loop, which is the boundary of S. Thus :∮
C

(
dx1

∂λ

∂x1

+ dx2
∂λ

∂x2

)
=

∮
C

dλ (65)

Observe now that if λ = φ = tan−1 x2
x1

, the polar angle and C contains the origin about
which the polar angle is measured then∮

C

dφ = 2π (66)

since we are going around the origin once, which is true for any arbitrary closed loop con-
taining the origin as small as possible. This means we must have:

εij∂i∂jφ = 2πδ(2)(~r) (67)

Similarly one can have λ such that :

εijk∂i∂j∂kλ = 4πδ(3)(~r) (68)
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Now let us use the formula for the vector potential to compute it directly for some cases.
Let us look at an infinite long current carrying wire, intersecting the y, z plane at y′, z′

~A(~r) =
µ0

4π

∫ ∞
−∞

Idx′̂i√
(x− x′)2 + (y − y′)2 + (z − z′)2

(69)

note that Idx′̂i ∼ ~Jdx′dy′dx′ here. Integrating we have :

µ0

4π
Iî ln[(x′ − x) +

√
(x′ − x)2 + (y′ − y)2 + (z′ − z)2]

∣∣∣∣∞
−∞

(70)

But we have to be careful in taking the limit here. To do this we replace ∞ by Λ, and then
take the limit Λ→∞:

lim
Λ→∞

[
µ0

4π
Iî ln[Λ +

√
Λ2 + (y′ − y)2 + (z′ − z)2]

−µ0

4π
Iî ln[−Λ +

√
Λ2 + (y′ − y)2 + (z′ − z)2]

]
= lim

Λ→∞

[
µ0

4π
Iî ln[Λ + Λ

√
1 +

(y′ − y)2 + (z′ − z)2

Λ2
]

−µ0

4π
Iî ln[−Λ + Λ

√
1 +

(y′ − y)2 + (z′ − z)2

Λ2
]

]
= lim

Λ→∞

[
µ0

4π
Iî ln[Λ + Λ(1 +

1

2

(y − y′)2 + (z − z′)2

Λ2
+O(Λ−4))]

−µ0

4π
Iî ln[−Λ + Λ(1 +

1

2

(y − y′)2 + (z − z′)2

Λ2
+O(Λ−4))]

]
= lim

Λ→∞

[
µ0

4π
Iî ln[2Λ +O(Λ−1))]

−µ0

4π
Iî ln[

1

2

(y − y′)2 + (z − z′)2

Λ
+O(Λ−3))]

]
= −µ0

4π
Iî ln[(y − y′)2 + (z − z′)2] + lim

Λ→∞
f(Λ) (71)

the term f(Λ) diverges but is a constant and can be understood as just a choice of gauge.
More over since the wire intersects the y−z plane at (y′, z′) we have s =

√
(y − y′)2 + (z − z′)2

, which is the radial distance from the wire. Thus :

~A = −µ0Iî

2π
ln s (72)
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u pto a gauge transformation. One can easily check that :

~∇× ~A =
1

s

∣∣∣∣∣∣
ŝ sφ̂ ẑ
∂
∂s

∂
∂φ

∂
∂z

As sAφ Az

∣∣∣∣∣∣
=

1

s

∣∣∣∣∣∣
ŝ sφ̂ ẑ
∂
∂s

∂
∂φ

∂
∂z

0 0 −µ0I
2π

ln s

∣∣∣∣∣∣
=
µ0I

2πs
φ̂ (73)

where we have taken the wire along the z axis to match with the standard form of the curl
in cylindrical coordinates.

Magnetix Flux

Now consider the following integral : ∮
C

~A.d~l (74)

which is the line integral of the vector potential along a closed loop C. We can use Stoke’s
theorem on this : ∮

C

~A.d~l =

∫
S

(~∇× ~A).d~S =

∫
S

~B.d~S (75)

Which is the surface integral of ~B over any surface S bounded by C. Thus although S is not
unique, the integral is always the same. This is called the Magnetic flux Φ. This has similar
application to the Ampere’s law as one can use this to find the vector potential in many
configurations. As an example let us find the vector potential due to a solenoid of radius a :
If we take a circular loop out side the solenoid , perpendicular to the axis of the solenoid ,
then ~B = ~0 outside, ~B = µ0nIẑ inside. Using the line integral over ~A :∮

C

~A.d~l =

∫ 2π

0

Aφφ̂.φ̂sdφ = Aφs2π (76)

where we have used the fact that the loop traverses in the φ direction hence only that
component of ~A contributes, and by symmetry around the cylinder Aφ can not be a function

of φ. While from the area integral of ~B we have:∫
S

~B.d~S =

∫ a

0

∫ 2π

0

~Binside.ẑρ dρ dφ+

∫ s

a

∫ 2π

0

~Boutside.ẑρ dρ dφ

=

∫ a

0

∫ 2π

0

µ0nIẑ.ẑρ dρ dφ+

∫ s

a

∫ 2π

0

~0.ẑρ dρ dφ

= µ0nIπa
2 (77)
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Finally equating we have :

Aφs2π = µ0nIπa
2

⇒ Aφ =
µ0nIa

2

2s
(78)

This is the vector potential outside the solenoid. Note that although the magnetic field is
zero outside, this does not mean that ~A is zero outside. Next if we take the loop inside, the
line integral over ~A is identical, while the surface integral over ~B yields :∫

S

~B.d~S =

∫ s

0

∫ 2π

0

µ0nIẑ.ẑρdρdφ = µ0nIs
2 (79)

equating, wefind the vector potential inside :

Aφ =
µ0nIs

2
(80)

Problems and discussion

8. The magnetic vector potential of a uniform magnetic field is given by ~A =
~B×~r

2
. One can

explicitly check this :

~∇× ~A =
1

2
~∇× (~∇× ~r)

=
1

2
[ ~B(~∇.~r)− ~r(~∇. ~B) + (~r.~∇) ~B − ( ~B.~∇)~r] (81)

Noting that

~∇. ~B = 0
~∇.~r = 3

(~r.~∇) ~B = (x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z
)(̂iBx + ĵBy + k̂Bz) = 0

( ~B.~∇)~r = (Bx
∂

∂x
+By

∂

∂y
+Bz

∂

∂z
)(̂ix+ ĵy + k̂z) = îBx + ĵBy + k̂Bz = ~B (82)

Plugging this in we have:

1

2
[3 ~B − ~B] = ~B (83)

we can check the gauge condition :

~∇. ~A =
1

2
~∇.( ~B × ~r)

=
1

2

∣∣∣∣∣∣
∂
∂x

∂
∂y

∂
∂z

Bx By Bz

x y z

∣∣∣∣∣∣
= 0 (84)
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We can use this to find the Magnetic field due to surface current ~K = Kî, which is given by:

~B = −µ0K

2
ĵ z > 0

=
µ0K

2
ĵ z < 0 (85)

plugging it in the form of the vector potential :

~A =
~B × ~r

2

= −µ0K

4
(ĵ × ~r)

= −µ0K

4
(−xk̂ + zî) z > 0

(86)

analogously we can find the case for z < 0 .
9. Multi-pole Expansion : Given a current configuration flowing along some closed loop C,
we have the vector potential :

~A(~r) =
µ0

4π

∮
C

I d~l

|~r − ~r′|
(87)

Now |~r−~r′| =
√
r2 + r′2 − 2rr′ cos θ′, θ′ being the angle between ~r and ~r′ . Now if the point

of observation ~r is far away from the current configuration, then |~r| = r > |~r′| = r′. Thus
we can use the expansion corresponding to Legendre polynomial

1√
r2 + r′2 − 2rr′ cos θ′

=
1

r
√

1− 2 r
′

r
cos θ′ + ( r

′

r
)2

=
1

r

∑
n=0

(
r′

r

)n
Pn(cos θ′) (88)

Plugging this in the expression for the vector potential :

~A(~r) =
µ0I

4π

∮
C

1

r

∑
n=0

(
r′

r

)n
Pn(cos θ′)d~l (89)

Interchanging order of integration and summation, under assumption of convergence we
have:

~A(~r) =
µ0I

4π

∑
n=0

1

rn+1

∮
C

(r′)nPn(cos θ′)d~l (90)

This is very similar to the expansion in electrostatics. The first term is the monopole term
corresponding to r−1 i.e. n = 0. That is zero since we have a closed loop integral :∮

C

d~l = 0 (91)
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The next term is the dipole term corresponding to r−2, and so on. Let us look at this term :

µ0I

4πr2

∮
C

r′ cos θ′d~l

=
µ0I

4πr2

∮
C

(r̂.~r′)d~l

=
µ0I

4πr2

∫
d~a× r̂ (92)

where we have used the vector identity :∫
~∇T × d~a = −

∮
C

Td~l (93)

Plugging in T = r̂.~r′, where r̂ is a given constant vector and ~∇ is with respect to ~r′ , we find:∫
d~a× r̂ =

∮
C

(r̂.~r′)d~l (94)

Now
∫
d~a is the total area of the loop. Defining ~m = I

∫
d~a as the magnetic moment , we

finally obtain the magnetic vector potential for a dipole:

~A =
µ0

4πr2
(~m× r̂) (95)

Using this we can calculate the magnetic field due to the dipole simply by taking the curl of
the above. Let us assume the ~m is along the z-axis, then ~m× r̂ = m sin θφ̂, which gives us :

~∇× ~A = ~∇× µ0

4πr2
m sin θφ̂

=
1

r2 sin θ

∣∣∣∣∣∣
r̂ rθ̂ r sin θφ̂
∂
∂r

∂
∂θ

∂
∂φ

0 0 (r sin θ) µ0
4πr2

m sin θ

∣∣∣∣∣∣
= r̂

1

r2 sin θ

∂

∂θ

(
µ0

4πr2
mr sin2 θ

)
− 1

r2 sin θ
rθ̂

∂

∂r

(
µ0

4πr2
mr sin2 θ

)
= r̂

µ0

4πr3
2 cos θ + θ̂

µ0

4πr3
sin θ (96)

Noting that ~m.r̂ = m cos θ and ~m.θ̂ = −m sin θ, we can rewrite: 2m cos θr̂ + m sin θθ̂ =
3(~m.r̂)− ~m. Hence we have the magnetic field for a dipole :

~B =
µ0

4πr3
[3(~m.r̂)− ~m] (97)

10. Find the magnetic field due to a constant vector potential ~A = Aφφ̂

11. Find the magnetic field due to the vector potential ~A = φẑ, where φ is the azimuthal
angle around the axis of the cylinder in z−direction. Also show that ~∇. ~B is non zero in this
case.
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12. Find the magnetic field due to a circular disc of radius R spinning with angular velocity
ω about its z− axis at height h from its center on the axis.
13. Solve ~∇× ~A = ~B directly. Let us do this problem : Remember that we had the Biot-
Savart law, with the steady state current condition ~∇. ~J = 0, which gives us the form of the
magnetic field in terms of ~J :

~B(~r) =
1

4π

∫
(µ0

~J(~r′))× (~r − ~r′)
|~r − ~r′|3

dx′ dy′ dz′ (98)

which is the solution to the differential equation ~∇× ~B = µ0
~J . Now we have the differential

equation ~∇× ~A = ~B with the identical condition ~∇. ~B = 0. Thus the solution can be carried
over simply by substituting in Biot-Savart’s : ~B → ~A and µ0

~J → ~B :

~A(~r) =
1

4π

∫
~B(~r′)× (~r − ~r′)

|~r − ~r′|3
dx′ dy′ dz′ (99)

14. Given a semi-circular loop in the lower half plane with current I flowing in the counter
clockwise dirction find the magnetic field at any point on the corresponding semi-circle in
the upper half plane. Given the radius of the circle is R. Now this can be computed directly
using Biot-Savart’s law, where ~r′ = R cosφî − R sinφĵ the point parameterizing the semi-
circular loop over which the current flows in the lower half plane, and ~r = R cos θî+R sin θĵ
parameterizing the points at which we need to find ~B. Here θ and φ are measured with
respect to the positive x−axis. Biot-savart’s law reads :

~B(~r) =
µ0I

4π

∫
d~l × ~r − ~r′

|~r − ~r′|3
dx′ dy′ dz′ (100)

Here d~l in is the variation along the semi-circular loop parametrized by ~r′. Since R is
constant, variation is only along φ, thus :

d~l = d~r′|R=constant = −R sinφ dφî−R cosφ dφĵ = −[R sinφî+R cosφĵ]dφ (101)

Hence we have :

d~r′ × (~r − ~r′) = −

∣∣∣∣∣∣
i j k

R sinφ dφ R cosφ dφ 0
R(cos θ − cosφ) R(sin θ + sinφ) 0

∣∣∣∣∣∣
= −k̂dφR2[sinφ sin θ + sin2 φ− cos θ cosφ+ cos2 φ]

= −k̂R2dφ[1− cos(θ + φ)]

(102)

Plugging this in for ~B we have:

~B =
µ0I

4π

∫ 0

π

−[1− cos(θ + φ)]k̂R2dφ

[R2(cos2 θ + cos2 φ− 2 cos θ cosφ) +R2(sin2 θ + sin2 φ+ 2 sin θ sinφ)]3/2
(103)

15



Note that the integral is from π to 0 signifying the direction of flow of current along the
element d~r′ . Simplifying :

=
µ0I

4π

∫ π

0

[1− cos(θ + φ)]k̂R2dφ

[2R2(1− cos(θ + φ)]3/2

=
µ0I

16πR
k̂

∫ π

0

dφ

sin θ+φ
2

=
µ0I

8πR
k̂ ln

[
tan θ+π

4

tan θ
4

]
(104)

15. Given a dipole ~m = −m0k̂ and a constant magnetic field ~B = B0k̂, find the radius of the
sphere with no radial component of magnetic field. For this let us write the total magnetic
field due to the back ground and the dipole :

~B = B0k̂ −
µ0m0

4πr3
[2 cos θ~r + sin θθ̂] (105)

Since we want ~B to be perpendicular r̂ i.e. component in radial direction is zero, we have:

~B.r̂ = B0k̂.r̂ −
µ0m0

4πr3
[2 cos θ~r + sin θθ̂].r̂ = 0 (106)

Note that k̂.r̂ = cos θ, hence :

[B0 −
µ0m0

4πr3
2] cos θ = 0 (107)

Since this is valid for any value of the θ, we must have:

r3 =
µ0m0

2πB0

(108)

This gives the sphere of no radial component of magnetic field.
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