
Course Name: M.Sc. in Computer Science
Semester – II, Session: 2019-2021
Department of Computer Science

Name of Faculty: Gautam Mahapatra, Associate Professor
Subject Taught: Advanced Data Structure – Growth Functions with different theorems

and operations, Recurrence Relations – Homogeneous & Non-Homogeneous and its
solutions, Master Theorem and its applications, Divide-and-Conquer Technique for Binary
Search, Max/Min, Merge Sort, Fast Integer Multiplication, Fast Matrix Multiplication

Class Taken:

Date: 18
th

 June 2020, Time: 11.00AM – 1.40PM

Number of Students Attended: 18 / 25

Software used: Skype
Internet Service: Jio-Fi

Details of the subject taught:

3.2 The Growth of Functions 217

approximate the time required to solve a problem of size n by multiplying the previous time

required by a constant. For example, on a supercomputer we might be able to solve a problem

of size n a million times faster than we can on a PC. However, this factor of one million will

not depend on n (except perhaps in some minor ways). One of the advantages of using big-O

notation, which we introduce in this section, is that we can estimate the growth of a function

without worrying about constant multipliers or smaller order terms. This means that, using big-

O notation, we do not have to worry about the hardware and software used to implement an

algorithm. Furthermore, using big-O notation, we can assume that the different operations used

in an algorithm take the same time, which simplifies the analysis considerably.

Big-O notation is used extensively to estimate the number of operations an algorithm uses

as its input grows. With the help of this notation, we can determine whether it is practical to

use a particular algorithm to solve a problem as the size of the input increases. Furthermore,

using big-O notation, we can compare two algorithms to determine which is more efficient as

the size of the input grows. For instance, if we have two algorithms for solving a problem, one

using 100n2 + 17n + 4 operations and the other using n3 operations, big-O notation can help us

see that the first algorithm uses far fewer operations when n is large, even though it uses more

operations for small values of n, such as n = 10.

This section introduces big-O notation and the related big-Omega and big-Theta notations.

We will explain how big-O, big-Omega, and big-Theta estimates are constructed and establish

estimates for some important functions that are used in the analysis of algorithms.

3.2.2 Big-O Notation

The growth of functions is often described using a special notation. Definition 1 describes this

notation.

Definition 1 Let f and g be functions from the set of integers or the set of real numbers to the set of real

numbers. We say that f (x) is O(g(x)) if there are constants C and k such that

|f (x)| ≤ C|g(x)|

whenever x > k. [This is read as “f (x) is big-oh of g(x).”]

Remark: Intuitively, the definition that f (x) is O(g(x)) says that f (x) grows slower than some

fixed multiple of g(x) as x grows without bound.

The constants C and k in the definition of big-O notation are called witnesses to the rela-

tionship f (x) is O(g(x)). To establish that f (x) is O(g(x)) we need only one pair of witnesses to

this relationship. That is, to show that f (x) is O(g(x)), we need find only one pair of constants C
Assessment

and k, the witnesses, such that |f (x)| ≤ C|g(x)| whenever x > k.

Note that when there is one pair of witnesses to the relationship f (x) is O(g(x)), there are

infinitely many pairs of witnesses. To see this, note that if C and k are one pair of witnesses,

then any pair C′ and k′, where C < C′ and k < k′, is also a pair of witnesses, because |f (x)| ≤
Links

C|g(x)| ≤ C′|g(x)| whenever x > k′ > k.

THE HISTORY OF BIG-O NOTATION Big-O notation has been used in mathematics for

more than a century. In computer science it is widely used in the analysis of algorithms, as

will be seen in Section 3.3. The German mathematician Paul Bachmann first introduced big-O

notation in 1892 in an important book on number theory. The big-O symbol is sometimes called

a Landau symbol after the German mathematician Edmund Landau, who used this notation

throughout his work. The use of big-O notation in computer science was popularized by Donald

Knuth, who also introduced the big-Ω and big-Θ notations defined later in this section.

218 3 / Algorithms

WORKINGWITH THE DEFINITION OF BIG-O NOTATION A useful approach for find-

ing a pair of witnesses is to first select a value of k for which the size of |f (x)| can be readily
estimated when x > k and to see whether we can use this estimate to find a value of C for which

|f (x)| ≤ C|g(x)| for x > k. This approach is illustrated in Example 1.

EXAMPLE 1 Show that f (x) = x2 + 2x + 1 is O(x2).

Solution: We observe that we can readily estimate the size of f (x) when x > 1 because x < x2Extra

Examples and 1 < x2 when x > 1. It follows that

0 ≤ x2 + 2x + 1 ≤ x2 + 2x2 + x2 = 4x2

whenever x > 1, as shown in Figure 1. Consequently, we can take C = 4 and k = 1 as witnesses

to show that f (x) is O(x2). That is, f (x) = x2 + 2x + 1 < 4x2 whenever x > 1. (Note that it is not

necessary to use absolute values here because all functions in these equalities are positive when

x is positive.)

Alternatively, we can estimate the size of f (x) when x > 2. When x > 2, we have 2x ≤ x2

and 1 ≤ x2. Consequently, if x > 2, we have

0 ≤ x2 + 2x + 1 ≤ x2 + x2 + x2 = 3x2.

It follows that C = 3 and k = 2 are also witnesses to the relation f (x) is O(x2).

Observe that in the relationship “f (x) is O(x2),” x2 can be replaced by any function that has

larger values than x2 for all x ≥ k for some positive real number k. For example, f (x) is O(x3),

f (x) is O(x2 + x + 7), and so on.

It is also true that x2 is O(x2 + 2x + 1), because x2 < x2 + 2x + 1 whenever x > 1. This

means that C = 1 and k = 1 are witnesses to the relationship x2 is O(x2 + 2x + 1). ◂

Note that in Example 1 we have two functions, f (x) = x2 + 2x + 1 and g(x) = x2, such

that f (x) is O(g(x)) and g(x) is O(f (x))—the latter fact following from the inequality

x2 ≤ x2 + 2x + 1, which holds for all nonnegative real numbers x. We say that two functions

4x2 x2x2 + 2x + 1

1 2

4

3

2

1

The part of the graph of f (x) = x2 + 2x + 1

that satisfies f (x) < 4x2 is shown in color.

x2 + 2x + 1 < 4x2 for x > 1

FIGURE 1 The function x2 + 2x + 1 is O(x2).

3.2 The Growth of Functions 219

f (x) and g(x) that satisfy both of these big-O relationships are of the same order. We will

return to this notion later in this section.

Remark: The fact that f (x) is O(g(x)) is sometimes written f (x) = O(g(x)). However, the equals

sign in this notation does not represent a genuine equality. Rather, this notation tells us that an

inequality holds relating the values of the functions f and g for sufficiently large numbers in the

domains of these functions. However, it is acceptable to write f (x) ∈ O(g(x)) because O(g(x))

represents the set of functions that are O(g(x)).

When f (x) is O(g(x)), and h(x) is a function that has larger absolute values than g(x) does

for sufficiently large values of x, it follows that f (x) is O(h(x)). In other words, the function g(x)

in the relationship f (x) is O(g(x)) can be replaced by a function with larger absolute values. To

see this, note that if

| f (x)| ≤ C|g(x)| if x > k,

and if |h(x)| > |g(x)| for all x > k, then

| f (x)| ≤ C|h(x)| if x > k.

Hence, f (x) is O(h(x)).

When big-O notation is used, the function g in the relationship f (x) isO(g(x)) is often chosen

to have the smallest growth rate of the functions belonging to a set of reference functions, such

as functions of the form xn, where n is a positive real number. (Important reference functions

are discussed later in this section.)

In subsequent discussions, we will almost always deal with functions that take on only

positive values. All references to absolute values can be dropped when working with big-O

estimates for such functions. Figure 2 illustrates the relationship f (x) is O(g(x)).

Source: Bachmann, Paul.

Die Arithmetik Der

Quadratischen Formen.

Verlag und Druck von BG

Teubner. Leipzig. Berlin.

1923

PAUL GUSTAV HEINRICH BACHMANN (1837–1920) Paul Bachmann, the son of a Lutheran pastor,
shared his father’s pious lifestyle and love of music. His mathematical talent was discovered by one of his teach-

Links

ers, even though he had difficulties with some of his early mathematical studies. After recuperating from tuber-
culosis in Switzerland, Bachmann studied mathematics, first at the University of Berlin and later at Göttingen,
where he attended lectures presented by the famous number theorist Dirichlet. He received his doctorate under
the German number theorist Kummer in 1862; his thesis was on group theory. Bachmann was a professor at
Breslau and later at Münster. After he retired from his professorship, he continued his mathematical writing,
played the piano, and served as a music critic for newspapers. Bachmann’s mathematical writings include a
five-volume survey of results and methods in number theory, a two-volume work on elementary number the-
ory, a book on irrational numbers, and a book on the famous conjecture known as Fermat’s Last Theorem. He
introduced big-O notation in his 1892 book Analytische Zahlentheorie.

Source: Smith Collection,

Rare Book & Manuscript

Library, Columbia

University in the City of

New York

EDMUND LANDAU (1877–1938) Edmund Landau, the son of a Berlin gynecologist, attended high school
and university in Berlin. He received his doctorate in 1899, under the direction of Frobenius. Landau first

Links

taught at the University of Berlin and then moved to Göttingen, where he was a full professor until the Nazis
forced him to stop teaching. Landau’s main contributions to mathematics were in the field of analytic number
theory. In particular, he established several important results concerning the distribution of primes. He au-
thored a three-volume exposition on number theory as well as other books on number theory and mathematical
analysis.

220 3 / Algorithms

f (x)

k

g(x)

Cg (x)

f (x) < Cg (x) for x > k

The part of the graph of f (x) that satisfies
f (x) < Cg (x) is shown in color.

FIGURE 2 The function f (x) is O(g(x)).

Example 2 illustrates how big-O notation is used to estimate the growth of functions.

EXAMPLE 2 Show that 7x2 is O(x3).

Solution:Note that when x > 7, we have 7x2 < x3. (We can obtain this inequality by multiplying

both sides of x > 7 by x2.) Consequently, we can take C = 1 and k = 7 as witnesses to establish

the relationship 7x2 is O(x3). Alternatively, when x > 1, we have 7x2 < 7x3, so that C = 7 and

k = 1 are also witnesses to the relationship 7x2 is O(x3). ◂

Courtesy of Stanford

University News Service

DONALD E. KNUTH (BORN 1938) Knuth grew up in Milwaukee, where his father taught bookkeeping at
a Lutheran high school and owned a small printing business. He was an excellent student, earning academic

Links

achievement awards. He applied his intelligence in unconventional ways, winning a contest when he was in the
eighth grade by finding over 4500 words that could be formed from the letters in “Ziegler’s Giant Bar.” This
won a television set for his school and a candy bar for everyone in his class.

Knuth had a difficult time choosing physics over music as his major at the Case Institute of Technology.
He then switched from physics to mathematics, and in 1960 he received his bachelor of science degree, si-
multaneously receiving a master of science degree by a special award of the faculty who considered his work
outstanding. At Case, he managed the basketball team and applied his talents by constructing a formula for
the value of each player. This novel approach was covered by Newsweek and by Walter Cronkite on the CBS
television network. Knuth began graduate work at the California Institute of Technology in 1960 and received

his Ph.D. there in 1963. During this time he worked as a consultant, writing compilers for different computers.
Knuth joined the staff of the California Institute of Technology in 1963, where he remained until 1968, when he took a job as a

full professor at Stanford University. He retired as Professor Emeritus in 1992 to concentrate on writing. He is especially interested
in updating and completing new volumes of his series The Art of Computer Programming, a work that has had a profound influence
on the development of computer science, which he began writing as a graduate student in 1962, focusing on compilers. In common
jargon, “Knuth,” referring to The Art of Computer Programming, has come to mean the reference that answers all questions about
such topics as data structures and algorithms.

Knuth is the founder of the modern study of computational complexity. He has made fundamental contributions to the subject of
compilers. His dissatisfaction with mathematics typography sparked him to invent the now widely used TeX and Metafont systems.
TeX has become a standard language for computer typography. Two of the many awards Knuth has received are the 1974 Turing
Award and the 1979 National Medal of Technology, awarded to him by President Carter.

Knuth has written for a wide range of professional journals in computer science and in mathematics. However, his first publi-
cation, in 1957, when he was a college freshman, was a parody of the metric system called “The Potrzebie Systems of Weights and
Measures,” which appeared in MAD Magazine and has been in reprint several times. He is a church organist, as his father was. He
is also a composer of music for the organ. Knuth believes that writing computer programs can be an aesthetic experience, much like
writing poetry or composing music.

Knuth pays $2.56 for the first person to find each error in his books and $0.32 for significant suggestions. If you send him
a letter with an error (you will need to use regular mail, because he has given up reading e-mail), he will eventually inform you
whether you were the first person to tell him about this error. Be prepared for a long wait, because he receives an overwhelming
amount of mail. (The author received a letter years after sending an error report to Knuth, noting that this report arrived several
months after the first report of this error.)

3.2 The Growth of Functions 221

Remark: In Example 2 we did not choose the smallest possible power of x the reference function
in the big-O estimate. Note that 7x2 is also big-O of x2 and x2 grows much slower than x3. In
fact, x2 would be the smallest possible power of x suitable as the reference function in the big-O
estimate.

Example 3 illustrates how to show that a big-O relationship does not hold.

EXAMPLE 3 Show that n2 is not O(n).

Solution: To show that n2 is notO(n), we must show that no pair of witnesses C and k exist such
that n2 ≤ Cn whenever n > k. We will use a proof by contradiction to show this.

Suppose that there are constants C and k for which n2 ≤ Cn whenever n > k. Observe that
when n > 0 we can divide both sides of the inequality n2 ≤ Cn by n to obtain the equivalent
inequality n ≤ C. However, no matter what C and k are, the inequality n ≤ C cannot hold for
all n with n > k. In particular, once we set a value of k, we see that when n is larger than the
maximum of k and C, it is not true that n ≤ C even though n > k. This contradiction shows that
n2 is not O(n). ◂

EXAMPLE 4 Example 2 shows that 7x2 is O(x3). Is it also true that x3 is O(7x2)?

Solution: To determine whether x3 is O(7x2), we need to determine whether witnesses C and
k exist, so that x3 ≤ C(7x2) whenever x > k. We will show that no such witnesses exist using a
proof by contradiction.

If C and k are witnesses, the inequality x3 ≤ C(7x2) holds for all x > k. Observe that
the inequality x3 ≤ C(7x2) is equivalent to the inequality x ≤ 7C, which follows by divid-
ing both sides by the positive quantity x2. However, no matter what C is, it is not the case
that x ≤ 7C for all x > k no matter what k is, because x can be made arbitrarily large. It fol-
lows that no witnesses C and k exist for this proposed big-O relationship. Hence, x3 is not
O(7x2). ◂

3.2.3 Big-O Estimates for Some Important Functions

Polynomials can often be used to estimate the growth of functions. Instead of analyzing the
growth of polynomials each time they occur, we would like a result that can always be used
to estimate the growth of a polynomial. Theorem 1 does this. It shows that the leading term
of a polynomial dominates its growth by asserting that a polynomial of degree n or less
is O(xn).

THEOREM 1 Let f (x) = anx
n + an−1x

n−1 +⋯ + a1x + a0, where a0, a1,… , an−1, an are real numbers. Then
f (x) is O(xn).

Proof: Using the triangle inequality (see Exercise 9 in Section 1.8), if x > 1 we have

| f (x)| = |anxn + an−1x
n−1 +⋯ + a1x + a0|

≤ |an|xn + |an−1|xn−1 +⋯ + |a1|x + |a0|

= xn
(
|an| + |an−1|∕x +⋯ + |a1|∕xn−1 + |a0|∕xn

)

≤ xn
(
|an| + |an−1| +⋯ + |a1| + |a0|

)
.

222 3 / Algorithms

This shows that

| f (x)| ≤ Cxn,

where C = |an| + |an−1| +⋯ + |a0| whenever x > 1. Hence, the witnesses C = |an| + |an−1|
+⋯ + |a0| and k = 1 show that f (x) is O(xn).

We now give some examples involving functions that have the set of positive integers as
their domains.

EXAMPLE 5 How can big-O notation be used to estimate the sum of the first n positive integers?

Solution: Because each of the integers in the sum of the first n positive integers does not exceed
n, it follows that

1 + 2 +⋯ + n ≤ n + n +⋯ + n = n2.

From this inequality it follows that 1 + 2 + 3 +⋯ + n is O(n2), taking C = 1 and k = 1 as wit-
nesses. (In this example the domains of the functions in the big-O relationship are the set of
positive integers.) ◂

In Example 6 big-O estimates will be developed for the factorial function and its logarithm.
These estimates will be important in the analysis of the number of steps used in sorting proce-
dures.

EXAMPLE 6 Give big-O estimates for the factorial function and the logarithm of the factorial function, where
the factorial function f (n) = n! is defined by

n! = 1 ⋅ 2 ⋅ 3 ⋅ ⋯ ⋅ n

whenever n is a positive integer, and 0! = 1. For example,

1! = 1, 2! = 1 ⋅ 2 = 2, 3! = 1 ⋅ 2 ⋅ 3 = 6, 4! = 1 ⋅ 2 ⋅ 3 ⋅ 4 = 24.

Note that the function n! grows rapidly. For instance,

20! = 2,432,902,008,176,640,000.

Solution: A big-O estimate for n! can be obtained by noting that each term in the product does
not exceed n. Hence,

n! = 1 ⋅ 2 ⋅ 3 ⋅ ⋯ ⋅ n

≤ n ⋅ n ⋅ n ⋅ ⋯ ⋅ n

= nn.

This inequality shows that n! is O(nn), taking C = 1 and k = 1 as witnesses. Taking logarithms
of both sides of the inequality established for n!, we obtain

log n! ≤ log nn = n log n.

This implies that log n! is O(n log n), again taking C = 1 and k = 1 as witnesses. ◂

3.2 The Growth of Functions 223

EXAMPLE 7 In Section 5.1 , we will show that n < 2n whenever n is a positive integer. Show that this in-
equality implies that n is O(2n), and use this inequality to show that log n is O(n).

Solution: Using the inequality n < 2n, we quickly can conclude that n is O(2n) by taking k =
C = 1 as witnesses. Note that because the logarithm function is increasing, taking logarithms
(base 2) of both sides of this inequality shows that

log n < n.

It follows that

log n is O(n).

(Again we take C = k = 1 as witnesses.)
If we have logarithms to a base b, where b is different from 2, we still have logb n is O(n)

because

logb n =
log n

log b
<

n

log b

whenever n is a positive integer. We take C = 1∕ log b and k = 1 as witnesses. (We have used

Theorem 3 in Appendix 2 to see that logb n = log n∕ log b.) ◂

Asmentioned before, big-O notation is used to estimate the number of operations needed to

solve a problem using a specified procedure or algorithm. The functions used in these estimates

often include the following:

1, log n, n, n log n, n2, 2n, n!

Using calculus it can be shown that each function in the list is smaller than the succeeding

function, in the sense that the ratio of a function and the succeeding function tends to zero as n

growswithout bound. Figure 3 displays the graphs of these functions, using a scale for the values

of the functions that doubles for each successive marking on the graph. That is, the vertical scale

in this graph is logarithmic.

3

n!

2n

n2

n log n

n

log n

l

4 5 6 7 82

4096

2048

1024

512

256

128

64

32

16

8

4

2

1

FIGURE 3 A display of the growth of functions commonly used in big-O estimates.

224 3 / Algorithms

USEFUL BIG-O ESTIMATES INVOLVING LOGARITHMS, POWERS, AND EXPONEN-

TIAL FUNCTIONS We now give some useful facts that help us determine whether big-O
relationships hold between pairs of functions when each of the functions is a power of a loga-
rithm, a power, or an exponential function of the form bn where b > 1. Their proofs are left as
Exercises 57–62 for readers skilled with calculus.

Theorem 1 shows that if f (n) is a polynomial of degree d or less, then f (n) isO(nd). Applying

this theorem, we see that if d > c > 1, then nc isO(nd). We leave it to the reader to show that the

reverse of this relationship does not hold. Putting these facts together, we see that if d > c > 1,

then

nc is O(nd), but nd is not O(nc).

In Example 7 we showed that logb n is O(n) whenever b > 1. More generally, whenever b > 1

and c and d are positive, we have

(logb n)
c is O(nd), but nd is not (O(logb n)

c).

This tells us that every positive power of the logarithm of n to the base b, where b > 1, is big-O

of every positive power of n, but the reverse relationship never holds.

In Example 7, we also showed that n is O(2n). More generally, whenever d is positive and

b > 1, we have

nd is O(bn), but bn is not O(nd).

This tells us that every power of n is big-O of every exponential function of n with a base that

is greater than one, but the reverse relationship never holds. Furthermore, when c > b > 1 we

have

bn is O(cn), but cn is not O(bn).

This tells us that if we have two exponential functions with different bases greater than one, one

of these functions is big-O of the other if and only if its base is smaller or equal.

Finally, we note that if c > 1, we have

cn is O(n!), but n! is not O(cn).

We can use the big-O estimates discussed here to help us order the growth of different

functions, as Example 8 illustrates.

EXAMPLE 8 Arrange the functions f1(n) = 8
√
n, f2(n) = (log n)2, f3(n) = 2n log n, f4(n) = n!, f5(n) = (1.1)n,

and f6(n) = n2 in a list so that each function is big-O of the next function.

Solution: From the big-O estimates described in this subsection, we see that f2(n) = (log n)2

is the slowest growing of these functions. (This follows because log n grows slower than any

positive power of n.) The next three functions, in order, are f1(n) = 8
√
n = f3(n) = 2n log n, and

f6(n) = n2. (We know this because f1(n) = 8n1∕2, f3(n) = 2n log n is a function that grows faster
than n but slower than nc for every c > 1, and f6(n) = n2 is of the form nc where c = 2.) The next

function in the list is f5(n) = (1.1)n, because it is an exponential function with base 1.1. Finally,

f4(n) = n! is the fastest growing function on the list, because f (n) = n! grows faster than any

exponential function of n. ◂

3.2 The Growth of Functions 225

3.2.4 The Growth of Combinations of Functions

Many algorithms are made up of two or more separate subprocedures. The number of steps
used by a computer to solve a problem with input of a specified size using such an algorithm is
the sum of the number of steps used by these subprocedures. To give a big-O estimate for the
number of steps needed, it is necessary to find big-O estimates for the number of steps used by
each subprocedure and then combine these estimates.

Big-O estimates of combinations of functions can be provided if care is takenwhen different

big-O estimates are combined. In particular, it is often necessary to estimate the growth of the

sum and the product of two functions. What can be said if big-O estimates for each of two

functions are known? To see what sort of estimates hold for the sum and the product of two

functions, suppose that f1(x) is O(g1(x)) and f2(x) is O(g2(x)).

From the definition of big-O notation, there are constants C1, C2, k1, and k2 such that

| f1(x)| ≤ C1|g1(x)|

when x > k1, and

| f2(x)| ≤ C2|g2(x)|

when x > k2. To estimate the sum of f1(x) and f2(x), note that

|(f1 + f2)(x)| = | f1(x) + f2(x)|
≤ |f1(x)| + | f2(x)| using the triangle inequality |a + b| ≤ |a| + |b|.

When x is greater than both k1 and k2, it follows from the inequalities for | f1(x)| and | f2(x)| that

| f1(x)| + | f2(x)| ≤ C1|g1(x)| + C2|g2(x)|
≤ C1|g(x)| + C2|g(x)|
= (C1 + C2)|g(x)|
= C|g(x)|,

where C = C1 + C2 and g(x) = max(|g1(x)|, |g2(x)|). [Heremax(a, b) denotes the maximum, or
larger, of a and b.]

This inequality shows that |(f1 + f2)(x)| ≤ C|g(x)| whenever x > k, where k = max(k1, k2).
We state this useful result as Theorem 2.

THEOREM 2 Suppose that f1(x) is O(g1(x)) and that f2(x) is O(g2(x)). Then (f1 + f2)(x) is O(g(x)), where
g(x) = (max(|g1(x)|, |g2(x)|) for all x.

We often have big-O estimates for f1 and f2 in terms of the same function g. In this situation,
Theorem 2 can be used to show that (f1 + f2)(x) is alsoO(g(x)), becausemax(g(x), g(x)) = g(x).
This result is stated in Corollary 1.

COROLLARY 1 Suppose that f1(x) and f2(x) are both O(g(x)). Then (f1 + f2)(x) is O(g(x)).

226 3 / Algorithms

In a similar way big-O estimates can be derived for the product of the functions f1 and f2.
When x is greater than max(k1, k2) it follows that

|(f1f2)(x)| = | f1(x)|| f2(x)|
≤ C1|g1(x)|C2|g2(x)|
≤ C1C2|(g1g2)(x)|
≤ C|(g1g2)(x)|,

where C = C1C2. From this inequality, it follows that f1(x)f2(x) is O(g1g2(x)), because there are
constants C and k, namely, C = C1C2 and k = max(k1, k2), such that |(f1f2)(x)| ≤ C|g1(x)g2(x)|
whenever x > k. This result is stated in Theorem 3.

THEOREM 3 Suppose that f1(x) is O(g1(x)) and f2(x) is O(g2(x)). Then (f1f2)(x) is O(g1(x)g2(x)).

The goal in using big-O notation to estimate functions is to choose a function g(x) as simple
as possible, that grows relatively slowly so that f (x) isO(g(x)). Examples 9 and 10 illustrate how
to use Theorems 2 and 3 to do this. The type of analysis given in these examples is often used
in the analysis of the time used to solve problems using computer programs.

EXAMPLE 9 Give a big-O estimate for f (n) = 3n log(n!) + (n2 + 3) log n, where n is a positive integer.

Solution: First, the product 3n log(n!) will be estimated. From Example 6 we know that log(n!)
is O(n log n). Using this estimate and the fact that 3n is O(n), Theorem 3 gives the estimate that
3n log(n!) is O(n2 log n).

Next, the product (n2 + 3) log n will be estimated. Because (n2 + 3) < 2n2 when n > 2, it
follows that n2 + 3 is O(n2). Thus, from Theorem 3 it follows that (n2 + 3) log n is O(n2 log n).
Using Theorem 2 to combine the two big-O estimates for the products shows that f (n) =
3n log(n!) + (n2 + 3) log n is O(n2 log n). ◂

EXAMPLE 10 Give a big-O estimate for f (x) = (x + 1) log(x2 + 1) + 3x2.

Solution: First, a big-O estimate for (x + 1) log(x2 + 1) will be found. Note that (x + 1) is O(x).
Furthermore, x2 + 1 ≤ 2x2 when x > 1. Hence,

log(x2 + 1) ≤ log(2x2) = log 2 + log x2 = log 2 + 2 log x ≤ 3 log x,

if x > 2. This shows that log(x2 + 1) is O(log x).
From Theorem 3 it follows that (x + 1) log(x2 + 1) is O(x log x). Because 3x2 is O(x2), The-

orem 2 tells us that f (x) is O(max(x log x, x2)). Because x log x ≤ x2, for x > 1, it follows that
f (x) is O(x2). ◂

3.2.5 Big-Omega and Big-Theta Notation

Big-O notation is used extensively to describe the growth of functions, but it has limitations.
In particular, when f (x) is O(g(x)), we have an upper bound, in terms of g(x), for the size of
f (x) for large values of x. However, big-O notation does not provide a lower bound for the size
of f (x) for large x. For this, we use big-Omega (big-Ω) notation. When we want to give bothΩ and Θ are the Greek

uppercase letters omega

and theta, respectively.

an upper and a lower bound on the size of a function f (x), relative to a reference function g(x),
we use big-Theta (big-Θ) notation. Both big-Omega and big-Theta notation were introduced

3.2 The Growth of Functions 227

by Donald Knuth in the 1970s. His motivation for introducing these notations was the common
misuse of big-O notation when both an upper and a lower bound on the size of a function are
needed. We now define big-Omega notation and illustrate its use. After doing so, we will do
the same for big-Theta notation.

Definition 2 Let f and g be functions from the set of integers or the set of real numbers to the set of real
numbers. We say that f (x) is Ω(g(x)) if there are constants C and k with C positive such that

|f (x)| ≥ C|g(x)|

whenever x > k. [This is read as “f (x) is big-Omega of g(x).”]

There is a strong connection between big-O and big-Omega notation. In particular, f (x) is

Ω(g(x)) if and only if g(x) is O(f (x)). We leave the verification of this fact as a straightforward
exercise for the reader.

EXAMPLE 11 The function f (x) = 8x3 + 5x2 + 7 is Ω(g(x)), where g(x) is the function g(x) = x3. This is easy
to see because f (x) = 8x3 + 5x2 + 7 ≥ 8x3 for all positive real numbers x. This is equivalent
to saying that g(x) = x3 is O(8x3 + 5x2 + 7), which can be established directly by turning the
inequality around. ◂

Often, it is important to know the order of growth of a function in terms of some relatively
simple reference function such as xn when n is a positive integer or cx, where c > 1. Knowing
the order of growth requires that we have both an upper bound and a lower bound for the size
of the function. That is, given a function f (x), we want a reference function g(x) such that f (x)
is O(g(x)) and f (x) is Ω(g(x)). Big-Theta notation, defined as follows, is used to express both of
these relationships, providing both an upper and a lower bound on the size of a function.

Definition 3 Let f and g be functions from the set of integers or the set of real numbers to the set of
real numbers. We say that f (x) is Θ(g(x)) if f (x) is O(g(x)) and f (x) is Ω(g(x)). When f (x) is
Θ(g(x)), we say that f is big-Theta of g(x), that f (x) is of order g(x), and that f (x) and g(x)
are of the same order.

When f (x) is Θ(g(x)), it is also the case that g(x) is Θ(f (x)). Also note that f (x) is Θ(g(x)) if
and only if f (x) is O(g(x)) and g(x) is O(f (x)) (see Exercise 31). Furthermore, note that f (x) is
Θ(g(x)) if and only if there are positive real numbers C1 and C2 and a positive real number k
such that

C1|g(x)| ≤ | f (x)| ≤ C2|g(x)|

whenever x > k. The existence of the constants C1, C2, and k tells us that f (x) is Ω(g(x)) and
that f (x) is O(g(x)), respectively.

Usually, when big-Theta notation is used, the function g(x) in Θ(g(x)) is a relatively simple
reference function, such as xn, cx, log x, and so on, while f (x) can be relatively complicated.

EXAMPLE 12 We showed (in Example 5) that the sum of the first n positive integers is O(n2). Determine
whether this sum is of order n2 without using the summation formula for this sum.

Solution: Let f (n) = 1 + 2 + 3 +⋯ + n. Because we already know that f (n) is O(n2), to show
that f (n) is of order n2 we need to find a positive constant C such that f (n) > Cn2 for sufficiently

Extra

Examples

228 3 / Algorithms

large integers n. To obtain a lower bound for this sum, we can ignore the first half of the terms.
Summing only the terms greater than ⌈n∕2⌉, we find that

1 + 2 +⋯ + n ≥ ⌈n∕2⌉ + (⌈n∕2⌉ + 1) +⋯ + n

≥ ⌈n∕2⌉ + ⌈n∕2⌉ +⋯ + ⌈n∕2⌉
= (n − ⌈n∕2⌉ + 1) ⌈n∕2⌉
≥ (n∕2)(n∕2)

= n2∕4.

This shows that f (n) is Ω(n2). We conclude that f (n) is of order n2, or in symbols, f (n)
is Θ(n2). ◂

Remark: Note that we can also show that f (n) =
∑n

i=1
i is Θ(n2) using the closed formula∑n

i=1
= n(n + 1)∕2 from Table 2 in Section 2.4 and derived in Exercise 37(b) of that section.

EXAMPLE 13 Show that 3x2 + 8x log x is Θ(x2).

Solution: Because 0 ≤ 8x log x ≤ 8x2, it follows that 3x2 + 8x log x ≤ 11x2 for x > 1.Extra

Examples Consequently, 3x2 + 8x log x is O(x2). Clearly, x2 is O(3x2 + 8x log x). Consequently,
3x2 + 8x log x is Θ(x2). ◂

One useful fact is that the leading term of a polynomial determines its order. For example,
if f (x) = 3x5 + x4 + 17x3 + 2, then f (x) is of order x5. This is stated in Theorem 4, whose proof
is left as Exercise 50.

THEOREM 4 Let f (x) = anx
n + an−1x

n−1 +⋯ + a1x + a0, where a0, a1,… , an are real numbers with
an ≠ 0. Then f (x) is of order xn.

EXAMPLE 14 The polynomials 3x8 + 10x7 + 221x2 + 1444, x19 − 18x4 − 10,112, and −x99 + 40,001x98 +
100,003x are of orders x8, x19, and x99, respectively. ◂

Unfortunately, as Knuth observed, big-O notation is often used by careless writers and
speakers as if it had the same meaning as big-Theta notation. Keep this in mind when you see
big-O notation used. The recent trend has been to use big-Theta notation whenever both upper
and lower bounds on the size of a function are needed.

Exercises

In Exercises 1–14, to establish a big-O relationship, find wit-

nesses C and k such that |f (x)| ≤ C|g(x)| whenever x > k.

1. Determine whether each of these functions is O(x).

a) f (x) = 10 b) f (x) = 3x + 7
c) f (x) = x2 + x + 1 d) f (x) = 5 log x
e) f (x) = ⌊x⌋ f) f (x) = ⌈x∕2⌉

2. Determine whether each of these functions is O(x2).

a) f (x) = 17x + 11 b) f (x) = x2 + 1000

c) f (x) = x log x d) f (x) = x4∕2
e) f (x) = 2x f) f (x) = ⌊x⌋ ⋅ ⌈x⌉

3. Use the definition of “f (x) is O(g(x))” to show that x4 +
9x3 + 4x + 7 is O(x4).

3.2 The Growth of Functions 229

4. Use the definition of “f (x) is O(g(x))” to show that

2x + 17 is O(3x).

5. Show that (x2 + 1)∕(x + 1) is O(x).

6. Show that (x3 + 2x)∕(2x + 1) is O(x2).

7. Find the least integer n such that f (x) is O(xn) for each of

these functions.

a) f (x) = 2x3 + x2 log x
b) f (x) = 3x3 + (log x)4

c) f (x) = (x4 + x2 + 1)∕(x3 + 1)

d) f (x) = (x4 + 5 log x)∕(x4 + 1)

8. Find the least integer n such that f (x) is O(xn) for each of

these functions.

a) f (x) = 2x2 + x3 log x
b) f (x) = 3x5 + (log x)4

c) f (x) = (x4 + x2 + 1)∕(x4 + 1)

d) f (x) = (x3 + 5 log x)∕(x4 + 1)

9. Show that x2 + 4x + 17 is O(x3) but that x3 is not O(x2 +
4x + 17).

10. Show that x3 is O(x4) but that x4 is not O(x3).

11. Show that 3x4 + 1 is O(x4∕2) and x4∕2 is O(3x4 + 1).

12. Show that x log x is O(x2) but that x2 is not O(x log x).

13. Show that 2n is O(3n) but that 3n is not O(2n). (Note that

this is a special case of Exercise 60.)

14. Determine whether x3 is O(g(x)) for each of these func-

tions g(x).

a) g(x) = x2 b) g(x) = x3

c) g(x) = x2 + x3 d) g(x) = x2 + x4

e) g(x) = 3x f) g(x) = x3∕2

15. Explain what it means for a function to be O(1).

16. Show that if f (x) is O(x), then f (x) is O(x2).

17. Suppose that f (x), g(x), and h(x) are functions such that

f (x) is O(g(x)) and g(x) is O(h(x)). Show that f (x) is

O(h(x)).

18. Let k be a positive integer. Show that 1k + 2k +⋯+ nk

is O(nk+1).

19. Determine whether each of the functions 2n+1 and 22n

is O(2n).

20. Determine whether each of the functions log(n + 1) and

log(n2 + 1) is O(log n).

21. Arrange the functions
√
n, 1000 log n, n log n, 2n!, 2n, 3n,

and n2∕1,000,000 in a list so that each function is big-O

of the next function.

22. Arrange the functions (1.5)n, n100, (log n)3,
√
n log n,

10n, (n!)2, and n99 + n98 in a list so that each function

is big-O of the next function.

23. Suppose that you have two different algorithms for solv-

ing a problem. To solve a problem of size n, the first

algorithm uses exactly n(log n) operations and the sec-

ond algorithm uses exactly n3∕2 operations. As n grows,

which algorithm uses fewer operations?

24. Suppose that you have two different algorithms for solv-

ing a problem. To solve a problem of size n, the first

algorithm uses exactly n22n operations and the second

algorithm uses exactly n! operations. As n grows, which
algorithm uses fewer operations?

25. Give as good a big-O estimate as possible for each of

these functions.

a) (n2 + 8)(n + 1) b) (n log n + n2)(n3 + 2)
c) (n! + 2n)(n3 + log(n2 + 1))

26. Give a big-O estimate for each of these functions. For the

function g in your estimate f (x) is O(g(x)), use a simple

function g of smallest order.

a) (n3+n2 log n)(log n+1) + (17 log n+19)(n3+2)
b) (2n + n2)(n3 + 3n)
c) (nn + n2n + 5n)(n! + 5n)

27. Give a big-O estimate for each of these functions. For

the function g in your estimate that f (x) is O(g(x)), use a

simple function g of the smallest order.

a) n log(n2 + 1) + n2 log n
b) (n log n + 1)2 + (log n + 1)(n2 + 1)
c) n2

n

+ nn
2

28. For each function in Exercise 1, determine whether that

function is Ω(x) and whether it is Θ(x).

29. For each function in Exercise 2, determine whether that

function is Ω(x2) and whether it is Θ(x2).

30. Show that each of these pairs of functions are of the same

order.

a) 3x + 7, x
b) 2x2 + x − 7, x2

c) ⌊x + 1∕2⌋, x
d) log(x2 + 1), log2 x
e) log10 x, log2 x

31. Show that f (x) isΘ(g(x)) if and only if f (x) isO(g(x)) and
g(x) is O(f (x)).

32. Show that if f (x) and g(x) are functions from the set

of real numbers to the set of real numbers, then f (x) is

O(g(x)) if and only if g(x) is Ω(f (x)).

33. Show that if f (x) and g(x) are functions from the set

of real numbers to the set of real numbers, then f (x) is

Θ(g(x)) if and only if there are positive constants k, C1,

and C2 such that C1|g(x)| ≤ |f (x)| ≤ C2|g(x)| whenever
x > k.

34. a) Show that 3x2 + x + 1 is Θ(3x2) by directly finding

the constants k, C1, and C2 in Exercise 33.
b) Express the relationship in part (a) using a picture

showing the functions 3x2 + x + 1, C1 ⋅ 3x
2, and C2 ⋅

3x2, and the constant k on the x-axis, where C1, C2,

and k are the constants you found in part (a) to show

that 3x2 + x + 1 is Θ(3x2).

35. Express the relationship f (x) is Θ(g(x)) using a picture.
Show the graphs of the functions f (x), C1|g(x)|, and
C2|g(x)|, as well as the constant k on the x-axis.

36. Explain what it means for a function to be Ω(1).

37. Explain what it means for a function to be Θ(1).

38. Give a big-O estimate of the product of the first n odd

positive integers.

39. Show that if f and g are real-valued functions such that

f (x) is O(g(x)), then for every positive integer n, f n(x) is

O(gn(x)). [Note that f n(x) = f (x)n.]

40. Show that for all real numbers a and b with a > 1 and

b > 1, if f (x) is O(logb x), then f (x) is O(loga x).

230 3 / Algorithms

41. Suppose that f (x) is O(g(x)), where f and g are increas-
ing and unbounded functions. Show that log |f (x)| is
O(log |g(x)|).

42. Suppose that f (x) is O(g(x)). Does it follow that 2f (x) is
O(2g(x))?

43. Let f1(x) and f2(x) be functions from the set of real num-
bers to the set of positive real numbers. Show that if f1(x)
and f2(x) are both Θ(g(x)), where g(x) is a function from
the set of real numbers to the set of positive real numbers,
then f1(x) + f2(x) is Θ(g(x)). Is this still true if f1(x) and
f2(x) can take negative values?

44. Suppose that f (x), g(x), and h(x) are functions such that
f (x) is Θ(g(x)) and g(x) is Θ(h(x)). Show that f (x) is
Θ(h(x)).

45. If f1(x) and f2(x) are functions from the set of positive in-
tegers to the set of positive real numbers and f1(x) and
f2(x) are both Θ(g(x)), is (f1 − f2)(x) also Θ(g(x))? Either
prove that it is or give a counterexample.

46. Show that if f1(x) and f2(x) are functions from the
set of positive integers to the set of real numbers and
f1(x) is Θ(g1(x)) and f2(x) is Θ(g2(x)), then (f1f2)(x) is
Θ((g1g2)(x)).

47. Find functions f and g from the set of positive integers to
the set of real numbers such that f (n) is not O(g(n)) and
g(n) is not O(f (n)).

48. Express the relationship f (x) is Ω(g(x)) using a picture.
Show the graphs of the functions f (x) and Cg(x), as well
as the constant k on the real axis.

49. Show that if f1(x) isΘ(g1(x)), f2(x) isΘ(g2(x)), and f2(x) ≠
0 and g2(x) ≠ 0 for all real numbers x > 0, then (f1∕f2)(x)
is Θ((g1∕g2)(x)).

50. Show that if f (x) = anx
n + an−1x

n−1 +⋯ + a1x + a0,
where a0, a1,… , an−1, and an are real numbers and an ≠
0, then f (x) is Θ(xn).

Big-O, big-Theta, and big-Omega notation can be extended to
functions in more than one variable. For example, the state-
ment f (x, y) is O(g(x, y)) means that there exist constants C,
k1, and k2 such that |f (x, y)| ≤ C|g(x, y)|whenever x > k1 and
y > k2.

51. Define the statement f (x, y) is Θ(g(x, y)).

52. Define the statement f (x, y) is Ω(g(x, y)).

53. Show that (x2 + xy + x log y)3 is O(x6y3).

54. Show that x5y3 + x4y4 + x3y5 is Ω(x3y3).

55. Show that ⌊xy⌋ is O(xy).
56. Show that ⌈xy⌉ is Ω(xy).
57. (Requires calculus) Show that if c > d > 0, then nd is

O(nc), but nc is not O(nd).

58. (Requires calculus) Show that if b > 1 and c and d are
positive, then (logb n)

c isO(nd), but nd is notO((logb n)
c).

59. (Requires calculus) Show that if d is positive and b > 1,
then nd is O(bn), but bn is not O(nd).

60. (Requires calculus) Show that if c > b > 1, then bn is
O(cn), but cn is not O(bn).

61. (Requires calculus) Show that if c > 1, then cn is O(n!),
but n! is not O(cn).

62. (Requires calculus) Prove or disprove that (2n)! is O(n!).

The following problems deal with another type of asymptotic
notation, called little-o notation. Because little-o notation is
based on the concept of limits, a knowledge of calculus is
needed for these problems. We say that f (x) is o(g(x)) [read
f (x) is “little-oh” of g(x)], when

lim
x→∞

f (x)

g(x)
= 0.

63. (Requires calculus) Show that

a) x2 is o(x3). b) x log x is o(x2).
c) x2 is o(2x). d) x2 + x + 1 is not o(x2).

64. (Requires calculus)

a) Show that if f (x) and g(x) are functions such that f (x)

is o(g(x)) and c is a constant, then cf (x) is o(g(x)),

where (cf)(x) = cf (x).
b) Show that if f1(x), f2(x), and g(x) are functions such

that f1(x) is o(g(x)) and f2(x) is o(g(x)), then (f1 +
f2)(x) is o(g(x)), where (f1 + f2)(x) = f1(x) + f2(x).

65. (Requires calculus) Represent pictorially that x log x is
o(x2) by graphing x log x, x2, and x log x∕x2. Explain how
this picture shows that x log x is o(x2).

66. (Requires calculus) Express the relationship f (x) is

o(g(x)) using a picture. Show the graphs of f (x), g(x), and

f (x)∕g(x).
∗67. (Requires calculus) Suppose that f (x) is o(g(x)). Does it

follow that 2f (x) is o(2g(x))?
∗68. (Requires calculus) Suppose that f (x) is o(g(x)). Does it

follow that log |f (x)| is o(log |g(x)|)?
69. (Requires calculus) The two parts of this exercise de-

scribe the relationship between little-o and big-O nota-

tion.

a) Show that if f (x) and g(x) are functions such that f (x)

is o(g(x)), then f (x) is O(g(x)).
b) Show that if f (x) and g(x) are functions such that f (x)

isO(g(x)), then it does not necessarily follow that f (x)

is o(g(x)).

70. (Requires calculus) Show that if f (x) is a polynomial of

degree n and g(x) is a polynomial of degree m where

m > n, then f (x) is o(g(x)).

71. (Requires calculus) Show that if f1(x) isO(g(x)) and f2(x)

is o(g(x)), then f1(x) + f2(x) is O(g(x)).

72. (Requires calculus) LetHn be the nth harmonic number

Hn = 1 +
1

2
+
1

3
+⋯ +

1

n
.

Show that Hn is O(log n). [Hint: First establish the in-

equality

n∑

j=2

1

j
< ∫

n

1

1

x
dx

3.3 Complexity of Algorithms 231

by showing that the sum of the areas of the rectangles of
height 1∕j with base from j − 1 to j, for j = 2, 3,… , n, is
less than the area under the curve y= 1∕x from 2 to n.]

∗73. Show that n log n is O(log n!).

74. Determine whether log n! is Θ(n log n). Justify your an-
swer.

∗75. Show that log n! is greater than (n log n)∕4 for

n > 4. [Hint: Begin with the inequality n! >
n(n − 1)(n − 2)⋯ ⌈n∕2⌉.]

Let f (x) and g(x) be functions from the set of real

numbers to the set of real numbers. We say that the

functions f and g are asymptotic and write f (x) ∼ g(x)

if limx→∞ f (x)∕g(x) = 1.

76. (Requires calculus) For each of these pairs of functions,

determine whether f and g are asymptotic.

a) f (x) = x2 + 3x + 7, g(x) = x2 + 10
b) f (x) = x2 log x, g(x) = x3

c) f (x) = x4 + log(3x8 + 7),

g(x) = (x2 + 17x + 3)2

d) f (x) = (x3 + x2 + x + 1)4,
g(x) = (x4 + x3 + x2 + x + 1)3.

77. (Requires calculus) For each of these pairs of functions,

determine whether f and g are asymptotic.

a) f (x) = log(x2 + 1), g(x) = log x
b) f (x) = 2x+3, g(x) = 2x+7

c) f (x) = 22
x

, g(x) = 2x
2

d) f (x) = 2x
2+x+1, g(x) = 2x

2+2x

3.3 Complexity of Algorithms

3.3.1 Introduction

When does an algorithm provide a satisfactory solution to a problem? First, it must always pro-

duce the correct answer. How this can be demonstrated will be discussed in Chapter 5. Second,

it should be efficient. The efficiency of algorithms will be discussed in this section.

How can the efficiency of an algorithm be analyzed? One measure of efficiency is the time

used by a computer to solve a problem using the algorithm, when input values are of a specified

size. A second measure is the amount of computer memory required to implement the algorithm

when input values are of a specified size.

Questions such as these involve the computational complexity of the algorithm. An anal-

ysis of the time required to solve a problem of a particular size involves the time complexity

of the algorithm. An analysis of the computer memory required involves the space complexity

of the algorithm. Considerations of the time and space complexity of an algorithm are essential

when algorithms are implemented. It is important to know whether an algorithm will produce

an answer in a microsecond, a minute, or a billion years. Likewise, the required memory must

be available to solve a problem, so that space complexity must be taken into account.

Considerations of space complexity are tied in with the particular data structures used to

implement the algorithm. Because data structures are not dealt with in detail in this book, space

complexity will not be considered. We will restrict our attention to time complexity.

3.3.2 Time Complexity

The time complexity of an algorithm can be expressed in terms of the number of operations

used by the algorithm when the input has a particular size. The operations used to measure time

complexity can be the comparison of integers, the addition of integers, the multiplication of

integers, the division of integers, or any other basic operation.

Time complexity is described in terms of the number of operations required instead of ac-

tual computer time because of the difference in time needed for different computers to perform

basic operations. Moreover, it is quite complicated to break all operations down to the basic bit

operations that a computer uses. Furthermore, the fastest computers in existence can perform

basic bit operations (for instance, adding, multiplying, comparing, or exchanging two bits) in

10−11 second (10 picoseconds), but personal computers may require 10−8 second (10 nanosec-

onds), which is 1000 times as long, to do the same operations.

232 3 / Algorithms

We illustrate how to analyze the time complexity of an algorithm by considering Algo-
rithm 1 of Section 3.1, which finds the maximum of a finite set of integers.

EXAMPLE 1 Describe the time complexity of Algorithm 1 of Section 3.1 for finding the maximum element
in a finite set of integers.

Solution: The number of comparisons will be used as the measure of the time complexity of theExtra

Examples algorithm, because comparisons are the basic operations used.
To find the maximum element of a set with n elements, listed in an arbitrary order, the

temporary maximum is first set equal to the initial term in the list. Then, after a comparison
i ≤ n has been done to determine that the end of the list has not yet been reached, the temporary
maximum and second term are compared, updating the temporary maximum to the value of
the second term if it is larger. This procedure is continued, using two additional comparisons
for each term of the list—one i ≤ n, to determine that the end of the list has not been reached
and another max < ai, to determine whether to update the temporary maximum. Because two
comparisons are used for each of the second through the nth elements and one more comparison
is used to exit the loop when i = n + 1, exactly 2(n − 1) + 1 = 2n − 1 comparisons are used
whenever this algorithm is applied. Hence, the algorithm for finding the maximum of a set
of n elements has time complexityΘ(n), measured in terms of the number of comparisons used.
Note that for this algorithm the number of comparisons is independent of particular input of n
numbers. ◂

Next, we will analyze the time complexity of searching algorithms.

EXAMPLE 2 Describe the time complexity of the linear search algorithm (specified as Algortihm 2 in
Section 3.1).

Solution: The number of comparisons used by Algorithm 2 in Section 3.1 will be taken as the
measure of the time complexity. At each step of the loop in the algorithm, two comparisons
are performed—one i ≤ n, to see whether the end of the list has been reached and one x ≤ ai,
to compare the element x with a term of the list. Finally, one more comparison i ≤ n is made
outside the loop. Consequently, if x = ai, 2i + 1 comparisons are used. The most comparisons,
2n + 2, are required when the element is not in the list. In this case, 2n comparisons are used
to determine that x is not ai, for i = 1, 2,… , n, an additional comparison is used to exit the
loop, and one comparison is made outside the loop. So when x is not in the list, a total of
2n + 2 comparisons are used. Hence, a linear search requires Θ(n) comparisons in the worst
case, because 2n + 2 is Θ(n). ◂

WORST-CASE COMPLEXITY The type of complexity analysis done in Example 2 is a
worst-case analysis. By the worst-case performance of an algorithm, we mean the largest num-
ber of operations needed to solve the given problem using this algorithm on input of specified
size. Worst-case analysis tells us how many operations an algorithm requires to guarantee that
it will produce a solution.

EXAMPLE 3 Describe the time complexity of the binary search algorithm (specified as Algorithm 3 in
Section 3.1) in terms of the number of comparisons used (and ignoring the time required to
compute m = ⌊(i + j)∕2⌋ in each iteration of the loop in the algorithm).

Solution: For simplicity, assume there are n = 2k elements in the list a1, a2,… , an, where k is a
nonnegative integer. Note that k = log n. (If n, the number of elements in the list, is not a power
of 2, the list can be considered part of a larger list with 2k+1 elements, where 2k < n < 2k+1.
Here 2k+1 is the smallest power of 2 larger than n.)

3.3 Complexity of Algorithms 233

At each stage of the algorithm, i and j, the locations of the first term and the last term of
the restricted list at that stage, are compared to see whether the restricted list has more than one
term. If i < j, a comparison is done to determine whether x is greater than the middle term of
the restricted list.

At the first stage the search is restricted to a list with 2k−1 terms. So far, two comparisons
have been used. This procedure is continued, using two comparisons at each stage to restrict
the search to a list with half as many terms. In other words, two comparisons are used at the
first stage of the algorithm when the list has 2k elements, two more when the search has been
reduced to a list with 2k−1 elements, two more when the search has been reduced to a list with
2k−2 elements, and so on, until two comparisons are used when the search has been reduced to a
list with 21 = 2 elements. Finally, when one term is left in the list, one comparison tells us that
there are no additional terms left, and one more comparison is used to determine if this term is x.

Hence, at most 2k + 2 = 2 log n + 2 comparisons are required to perform a binary search
when the list being searched has 2k elements. (If n is not a power of 2, the original list is
expanded to a list with 2k+1 terms, where k = ⌊log n⌋, and the search requires at most 2 ⌈log n⌉ +
2 comparisons.) It follows that in the worst case, binary search requires O(log n) comparisons.

Note that in the worst case, 2 log n + 2 comparisons are used by the binary search. Hence,
the binary search uses Θ(log n) comparisons in the worst case, because 2 log n + 2 = Θ(log n).
From this analysis it follows that in the worst case, the binary search algorithm is more efficient

than the linear search algorithm, because we know by Example 2 that the linear search algorithm

has Θ(n) worst-case time complexity. ◂

AVERAGE-CASE COMPLEXITY Another important type of complexity analysis, besides

worst-case analysis, is called average-case analysis. The average number of operations used

to solve the problem over all possible inputs of a given size is found in this type of analy-

sis. Average-case time complexity analysis is usually much more complicated than worst-case

analysis. However, the average-case analysis for the linear search algorithm can be done without

difficulty, as shown in Example 4.

EXAMPLE 4 Describe the average-case performance of the linear search algorithm in terms of the average

number of comparisons used, assuming that the integer x is in the list and it is equally likely

that x is in any position.

Solution: By hypothesis, the integer x is one of the integers a1, a2,… , an in the list. If x is the

first term a1 of the list, three comparisons are needed, one i ≤ n to determine whether the end

of the list has been reached, one x ≠ ai to compare x and the first term, and one i ≤ n outside

the loop. If x is the second term a2 of the list, two more comparisons are needed, so that a total

of five comparisons are used. In general, if x is the ith term of the list ai, two comparisons will

be used at each of the i steps of the loop, and one outside the loop, so that a total of 2i + 1

comparisons are needed. Hence, the average number of comparisons used equals

3 + 5 + 7 +⋯ + (2n + 1)

n
=
2(1 + 2 + 3 +⋯ + n) + n

n
.

Using the formula from line 2 of Table 2 in Section 2.4 (and see Exercise 37(b) of Section 2.4),

1 + 2 + 3 +⋯ + n =
n(n + 1)

2
.

Hence, the average number of comparisons used by the linear search algorithm (when x is known

to be in the list) is

2[n(n + 1)∕2]

n
+ 1 = n + 2,

which is Θ(n). ◂

234 3 / Algorithms

Remark: In the analysis in Example 4 we assumed that x is in the list being searched. It is also
possible to do an average-case analysis of this algorithm when x may not be in the list (see
Exercise 23).

Remark: Although we have counted the comparisons needed to determine whether we have
reached the end of a loop, these comparisons are often not counted. From this point on we will
ignore such comparisons.

WORST-CASE COMPLEXITY OF TWO SORTING ALGORITHMS We analyze the
worst-case complexity of the bubble sort and the insertion sort in Examples 5 and 6.

EXAMPLE 5 What is the worst-case complexity of the bubble sort in terms of the number of comparisons
made?

Solution: The bubble sort described before Example 4 in Section 3.1 sorts a list by performing
a sequence of passes through the list. During each pass the bubble sort successively compares
adjacent elements, interchanging them if necessary. When the ith pass begins, the i − 1 largest
elements are guaranteed to be in the correct positions. During this pass, n − i comparisons are
used. Consequently, the total number of comparisons used by the bubble sort to order a list of
n elements is

(n − 1) + (n − 2) +⋯ + 2 + 1 =
(n − 1)n

2

using a summation formula from line 2 in Table 2 in Section 2.4 (and Exercise 37(b) in
Section 2.4). Note that the bubble sort always uses this many comparisons, because it con-
tinues even if the list becomes completely sorted at some intermediate step. Consequently, the
bubble sort uses (n − 1)n∕2 comparisons, so it has Θ(n2) worst-case complexity in terms of the
number of comparisons used. ◂

EXAMPLE 6 What is the worst-case complexity of the insertion sort in terms of the number of comparisons
made?

Solution: The insertion sort (described in Section 3.1) inserts the jth element into the correct
position among the first j − 1 elements that have already been put into the correct order. It does
this by using a linear search technique, successively comparing the jth element with successive
terms until a term that is greater than or equal to it is found or it compares aj with itself and stops
because aj is not less than itself. Consequently, in the worst case, j comparisons are required to
insert the jth element into the correct position. Therefore, the total number of comparisons used
by the insertion sort to sort a list of n elements is

2 + 3 +⋯ + n =
n(n + 1)

2
− 1,

using the summation formula for the sum of consecutive integers in line 2 of Table 2 of
Section 2.4 (and see Exercise 37(b) of Section 2.4), and noting that the first term, 1, is missing
in this sum. Note that the insertion sort may use considerably fewer comparisons if the smaller
elements started out at the end of the list. We conclude that the insertion sort has worst-case
complexity Θ(n2). ◂

3.3 Complexity of Algorithms 235

In Examples 5 and 6 we showed that both the bubble sort and the insertion sort have
worst-case time complexity Θ(n2). However, the most efficient sorting algorithms can sort n
items in O(n log n) time, as we will show in Sections 8.3 and 11.1 using techniques we de-
velop in those sections. From this point on, we will assume that sorting n items can be done in

O(n log n) time.
You can run animations found on many different websites that simultaneously run different

Links
sorting algorithms on the same lists. Doing so will help you gain insights into the efficiency

of different sorting algorithms. Among the sorting algorithms that you can find are the bubble

sort, the insertion sort, the shell sort, the merge sort, and the quick sort. Some of these anima-

tions allow you to test the relative performance of these sorting algorithms on lists of randomly

selected items, lists that are nearly sorted, and lists that are in reversed order.

3.3.3 Complexity of Matrix Multiplication

The definition of the product of two matrices can be expressed as an algorithm for computing

the product of two matrices. Suppose that C = [cij] is the m × nmatrix that is the product of the

m × k matrix A = [aij] and the k × n matrix B = [bij]. The algorithm based on the definition of
the matrix product is expressed in pseudocode in Algorithm 1.

ALGORITHM 1 Matrix Multiplication.

procedure matrix multiplication(A, B: matrices)

for i := 1 to m

for j := 1 to n

cij := 0

for q := 1 to k

cij := cij + aiqbqj
return C {C = [cij] is the product of A and B}

We can determine the complexity of this algorithm in terms of the number of additions and

multiplications used.

EXAMPLE 7 How many additions of integers and multiplications of integers are used by Algorithm 1 to

multiply two n × n matrices with integer entries?

Solution: There are n2 entries in the product of A and B. To find each entry requires a total of n

multiplications and n − 1 additions. Hence, a total of n3 multiplications and n2(n − 1) additions
are used. ◂

Surprisingly, there are more efficient algorithms for matrix multiplication than that given in

Algorithm 1. As Example 7 shows, multiplying two n × n matrices directly from the definition

requires O(n3) multiplications and additions. Using other algorithms, two n × n matrices can

be multiplied using O(n
√
7) multiplications and additions. (Details of such algorithms can be

found in [CoLeRiSt09].)

We can also analyze the complexity of the algorithm we described in Chapter 2 for com-

puting the Boolean product of two matrices, which we display as Algorithm 2.

236 3 / Algorithms

ALGORITHM 2 The Boolean Product of Zero–One Matrices.

procedure Boolean product of Zero–One Matrices (A, B: zero–one matrices)

for i := 1 to m

for j := 1 to n

cij := 0

for q := 1 to k

cij := cij ∨ (aiq ∧ bqj)

return C {C = [cij] is the Boolean product of A and B}

The number of bit operations used to find the Boolean product of two n × n matrices can

be easily determined.

EXAMPLE 8 How many bit operations are used to find A ⊙ B, where A and B are n × n zero–one matrices?

Solution: There are n2 entries in A⊙B. Using Algorithm 2, a total of n ORs and n ANDs are

used to find an entry of A⊙B. Hence, 2n bit operations are used to find each entry. Therefore,

2n3 bit operations are required to compute A⊙B using Algorithm 2. ◂

MATRIX-CHAIN MULTIPLICATION There is another important problem involving the

complexity of the multiplication of matrices. How should the matrix-chain A1A2⋯An be

computed using the fewest multiplications of integers, where A1,A2,… ,An are m1 × m2, m2 ×Links
m3,… , mn × mn+1 matrices, respectively, and each has integers as entries? (Because matrix

multiplication is associative, as shown in Exercise 13 in Section 2.6, the order of the mul-

tiplication used does not change the product.) Note that m1m2m3 multiplications of integers

are performed to multiply an m1 × m2 matrix and an m2 × m3 matrix using Algorithm 1.

Example 9 illustrates this problem.

EXAMPLE 9 In which order should the matrices A1,A2, and A3—where A1 is 30 × 20, A2 is 20 × 40, and
A3 is 40 × 10, all with integer entries—be multiplied to use the least number of multiplications
of integers?

Solution: There are two possible ways to computeA1A2A3. These areA1(A2A3) and (A1A2)A3.
If A2 and A3 are first multiplied, a total of 20 ⋅ 40 ⋅ 10 = 8000 multiplications of inte-

gers are used to obtain the 20 × 10 matrix A2A3. Then, to multiply A1 and A2A3 requires

30 ⋅ 20 ⋅ 10 = 6000 multiplications. Hence, a total of

8000 + 6000 = 14,000

multiplications are used. On the other hand, ifA1 andA2 are first multiplied, then 30 ⋅ 20 ⋅ 40 =
24,000 multiplications are used to obtain the 30 × 40 matrix A1A2. Then, to multiply A1A2 and

A3 requires 30 ⋅ 40 ⋅ 10 = 12,000 multiplications. Hence, a total of

24,000 + 12,000 = 36,000

multiplications are used.

Clearly, the first method is more efficient. ◂

We will return to this problem in Exercise 57 in Section 8.1. Algorithms for determining

the most efficient way to carry out matrix-chain multiplication are discussed in [CoLeRiSt09].

3.3 Complexity of Algorithms 237

3.3.4 Algorithmic Paradigms

In Section 3.1 we introduced the basic notion of an algorithm. We provided examples of many
different algorithms, including searching and sorting algorithms. We also introduced the con-

cept of a greedy algorithm, giving examples of several problems that can be solved by greedy

algorithms. Greedy algorithms provide an example of an algorithmic paradigm, that is, a gen-

eral approach based on a particular concept that can be used to construct algorithms for solving

a variety of problems.

In this book we will construct algorithms for solving many different problems based on a

variety of algorithmic paradigms, including the most widely used algorithmic paradigms. These

paradigms can serve as the basis for constructing efficient algorithms for solving a wide range

of problems.

Some of the algorithms we have already studied are based on an algorithmic paradigm

known as brute force, which we will describe in this section. Algorithmic paradigms, stud-

ied later in this book, include divide-and-conquer algorithms studied in Chapter 8, dynamic

programming, also studied in Chapter 8, backtracking, studied in Chapter 10, and probabilis-

tic algorithms, studied in Chapter 7. There are many important algorithmic paradigms besides

those described in this book. Consult books on algorithm design such as [KlTa06] to learn more

about them.

BRUTE-FORCE ALGORITHMS Brute force is an important, and basic, algorithmic

paradigm. In a brute-force algorithm, a problem is solved in the most straightforward manner

based on the statement of the problem and the definitions of terms. Brute-force algorithms are

designed to solve problems without regard to the computing resources required. For example,

in some brute-force algorithms the solution to a problem is found by examining every possible

solution, looking for the best possible. In general, brute-force algorithms are naive approaches

for solving problems that do not take advantage of any special structure of the problem or clever

ideas.

Note that Algorithm 1 in Section 3.1 for finding the maximum number in a sequence is a

brute-force algorithm because it examines each of the n numbers in a sequence to find the max-

imum term. The algorithm for finding the sum of n numbers by adding one additional number

at a time is also a brute-force algorithm, as is the algorithm for matrix multiplication based on

its definition (Algorithm 1). The bubble, insertion, and selection sorts (described in Section 3.1

in Algorithms 4 and 5 and in the preamble of Exercise 43, respectively) are also considered to

be brute-force algorithms; all three of these sorting algorithms are straightforward approaches

much less efficient than other sorting algorithms such as the merge sort and the quick sort dis-

cussed in Chapters 5 and 8.

Although brute-force algorithms are often inefficient, they are often quite useful. A brute-

force algorithmmay be able to solve practical instances of problems, particularly when the input

is not too large, even if it is impractical to use this algorithm for larger inputs. Furthermore,

when designing new algorithms to solve a problem, the goal is often to find a new algorithm

that is more efficient than a brute-force algorithm. One such problem of this type is described

in Example 10.

EXAMPLE 10 Construct a brute-force algorithm for finding the closest pair of points in a set of n points in

the plane and provide a worst-case big-O estimate for the number of bit operations used by the

algorithm.

Solution: Suppose that we are given as input the points (x1, y1), (x2, y2),… , (xn, yn). Recall that

the distance between (xi, yi) and (xj, yj) is
√
(xj − xi)

2 + (yj − yi)
2. A brute-force algorithm can

find the closest pair of these points by computing the distances between all pairs of the n points

and determining the smallest distance. (We can make one small simplification to make the com-

putation easier; we can compute the square of the distance between pairs of points to find the

238 3 / Algorithms

closest pair, rather than the distance between these points. We can do this because the square
of the distance between a pair of points is smallest when the distance between these points is
smallest.)

ALGORITHM 3 Brute-Force Algorithm for Closest Pair of Points.

procedure closest-pair((x1, y1), (x2, y2),… , (xn, yn): pairs of real numbers)

min= ∞

for i := 2 to n

for j := 1 to i − 1

if (xj − xi)
2 + (yj − yi)

2
< min then

min := (xj − xi)
2 + (yj − yi)

2

closest pair := ((xi, yi), (xj, yj))

return closest pair

To estimate the number of operations used by the algorithm, first note that there are
n(n − 1)∕2 pairs of points ((xi, yi), (xj, yj)) that we loop through (as the reader should verify).

For each such pair we compute (xj − xi)
2 + (yj − yi)

2, compare it with the current value of min,
and if it is smaller than min, replace the current value of min by this new value. It follows that
this algorithm uses Θ(n2) operations, in terms of arithmetic operations and comparisons.

In Chapter 8 we will devise an algorithm that determines the closest pair of points when
given n points in the plane as input that has O(n log n) worst-case complexity. The original dis-
covery of such an algorithm, much more efficient than the brute-force approach, was considered

quite surprising. ◂

3.3.5 Understanding the Complexity of Algorithms

Table 1 displays some common terminology used to describe the time complexity of algorithms.

For example, an algorithm that finds the largest of the first 100 terms of a list of n elements by

applying Algorithm 1 to the sequence of the first 100 terms, where n is an integer with n ≥ 100,

has constant complexity because it uses 99 comparisons no matter what n is (as the reader

can verify). The linear search algorithm has linear (worst-case or average-case) complexity

and the binary search algorithm has logarithmic (worst-case) complexity. Many important

algorithms have n log n, or linearithmic (worst-case) complexity, such as the merge sort, which

we will introduce in Chapter 4. (The word linearithmic is a combination of the words linear and

logarithmic.)

TABLE 1 Commonly Used Terminology for the
Complexity of Algorithms.

Complexity Terminology

Θ(1) Constant complexity

Θ(log n) Logarithmic complexity

Θ(n) Linear complexity

Θ(n log n) Linearithmic complexity

Θ(nb) Polynomial complexity

Θ(bn), where b > 1 Exponential complexity

Θ(n!) Factorial complexity

3.3 Complexity of Algorithms 239

An algorithm has polynomial complexity if it has complexity Θ(nb), where b is an inte-
ger with b ≥ 1. For example, the bubble sort algorithm is a polynomial-time algorithm because
it uses Θ(n2) comparisons in the worst case. An algorithm has exponential complexity if it
has time complexity Θ(bn), where b > 1. The algorithm that determines whether a compound
proposition in n variables is satisfiable by checking all possible assignments of truth variables
is an algorithm with exponential complexity, because it uses Θ(2n) operations. Finally, an al-
gorithm has factorial complexity if it has Θ(n!) time complexity. The algorithm that finds all
orders that a traveling salesperson could use to visit n cities has factorial complexity; we will
discuss this algorithm in Chapter 9.

TRACTABILITY A problem that is solvable using an algorithm with polynomial (or better)
worst-case complexity is called tractable, because the expectation is that the algorithmwill pro-
duce the solution to the problem for reasonably sized input in a relatively short time. However,
if the polynomial in the big-Θ estimate has high degree (such as degree 100) or if the coeffi-

cients are extremely large, the algorithm may take an extremely long time to solve the problem.

Consequently, that a problem can be solved using an algorithm with polynomial worst-case

time complexity is no guarantee that the problem can be solved in a reasonable amount of time

for even relatively small input values. Fortunately, in practice, the degree and coefficients of

polynomials in such estimates are often small.

The situation is much worse for problems that cannot be solved using an algorithm with

worst-case polynomial time complexity. Such problems are called intractable. Usually, but not

always, an extremely large amount of time is required to solve the problem for the worst cases

of even small input values. In practice, however, there are situations where an algorithm with a

certain worst-case time complexity may be able to solve a problem much more quickly for most

cases than for its worst case. When we are willing to allow that some, perhaps small, number of

cases may not be solved in a reasonable amount of time, the average-case time complexity is a

better measure of how long an algorithm takes to solve a problem. Many problems important in

industry are thought to be intractable but can be practically solved for essentially all sets of in-

put that arise in daily life. Another way that intractable problems are handled when they arise in

practical applications is that instead of looking for exact solutions of a problem, approximate so-

lutions are sought. It may be the case that fast algorithms exist for finding such approximate solu-

tions, perhaps even with a guarantee that they do not differ by very much from an exact solution.

Some problems even exist for which it can be shown that no algorithm exists for solving

them. Such problems are called unsolvable (as opposed to solvable problems that can be solved

using an algorithm). The first proof that there are unsolvable problems was provided by the great

English mathematician and computer scientist Alan Turing when he showed that the halting

problem is unsolvable. Recall that we proved that the halting problem is unsolvable in Section

3.1. (A biography of Alan Turing and a description of some of his other work can be found in

Chapter 13.)

P VERSUS NP The study of the complexity of algorithms goes far beyond what we can de-

scribe here. Note, however, that many solvable problems are believed to have the property that

no algorithm with polynomial worst-case time complexity solves them, but that a solution, if

known, can be checked in polynomial time. Problems for which a solution can be checked in

polynomial time are said to belong to the class NP (tractable problems are said to belong to

class P). The abbreviation NP stands for nondeterministic polynomial time. The satisfiability

problem, discussed in Section 1.3, is an example of an NP problem—we can quickly verify that
an assignment of truth values to the variables of a compound proposition makes it true, but no
polynomial time algorithm has been discovered for finding such an assignment of truth values.
(For example, an exhaustive search of all possible truth values requires Ω(2n) bit operations
where n is the number of variables in the compound proposition.)

There is also an important class of problems, calledNP-complete problems, with the prop-
erty that if any of these problems can be solved by a polynomial worst-case time algorithm, thenLinks

240 3 / Algorithms

all problems in the class NP can be solved by polynomial worst-case time algorithms. The sat-
isfiability problem is also an example of an NP-complete problem. It is an NP problem and if
a polynomial time algorithm for solving it were known, there would be polynomial time algo-
rithms for all problems known to be in this class of problems (and there are many important
problems in this class). This last statement follows from the fact that every problem in NP
can be reduced in polynomial time to the satisfiability problem. Although more than 3000 NP-
complete problems are now known, the satisfiability problem was the first problem shown to be
NP-complete. The theorem that asserts this is known as theCook-Levin theorem after Stephen
Cook and Leonid Levin, who independently proved it in the early 1970s.

The P versus NP problem asks whether NP, the class of problems for which it is possible
to check solutions in polynomial time, equals P, the class of tractable problems. If P ≠NP, there
would be some problems that cannot be solved in polynomial time, but whose solutions could
be verified in polynomial time. The concept of NP-completeness is helpful in research aimed
at solving the P versus NP problem, because NP-complete problems are the problems in NP
considered most likely not to be in P, as every problem in NP can be reduced to an NP-complete
problem in polynomial time. A large majority of theoretical computer scientists believe that
P ≠ NP, which would mean that no NP-complete problem can be solved in polynomial time.
One reason for this belief is that despite extensive research, no one has succeeded in showing
that P = NP. In particular, no one has been able to find an algorithm with worst-case polynomial
time complexity that solves any NP-complete problem. The P versus NP problem is one of the
most famous unsolved problems in the mathematical sciences (which include theoretical com-
puter science). It is one of the seven famous Millennium Prize Problems, of which six remain
unsolved. A prize of $1,000,000 is offered by the Clay Mathematics Institute for its solution.

Links

For more information about the complexity of algorithms, consult the references, including

[CoLeRiSt09], for this section listed at the end of this book. (Also, for a more formal discussion

of computational complexity in terms of Turing machines, see Section 13.5.)

PRACTICAL CONSIDERATIONS Note that a big-Θ estimate of the time complexity of an

algorithm expresses how the time required to solve the problem increases as the input grows

in size. In practice, the best estimate (that is, with the smallest reference function) that can

be shown is used. However, big-Θ estimates of time complexity cannot be directly translated

into the actual amount of computer time used. One reason is that a big-Θ estimate f (n) is

Θ(g(n)), where f (n) is the time complexity of an algorithm and g(n) is a reference function,

means that C1g(n) ≤ f (n) ≤ C2g(n) when n > k, where C1, C2, and k are constants. So without

knowing the constants C1, C2, and k in the inequality, this estimate cannot be used to determine

a lower bound and an upper bound on the number of operations used in the worst case. As

remarked before, the time required for an operation depends on the type of operation and the

Courtesy of Dr. Stephen Cook

STEPHEN COOK (BORN 1939) Stephen Cook was born in Buffalo, where his father worked as an industrial

Links

chemist and taught university courses. His mother taught English courses in a community college. While in
high school Cook developed an interest in electronics through his work with a famous local inventor noted for
inventing the first implantable cardiac pacemaker.

Cook was a mathematics major at the University of Michigan, graduating in 1961. He did graduate work
at Harvard, receiving a master’s degree in 1962 and a Ph.D. in 1966. Cook was appointed an assistant professor
in the Mathematics Department at the University of California, Berkeley, in 1966. He was not granted tenure
there, possibly because the members of the Mathematics Department did not find his work on what is now
considered to be one of the most important areas of theoretical computer science of sufficient interest. In 1970,
he joined the University of Toronto as an assistant professor, holding a joint appointment in the Computer
Science Department and the Mathematics Department. He has remained at the University of Toronto, where he
was appointed a University Professor in 1985.

Cook is considered to be one of the founders of computational complexity theory. His 1971 paper “The Complexity of Theorem
Proving Procedures” formalized the notions of NP-completeness and polynomial-time reduction, showed that NP-complete problems
exist by showing that the satisfiability problem is such a problem, and introduced the notorious P versus NP problem.

Cook has received many awards, including the 1982 Turing Award. He is married and has two sons. Among his interests are
playing the violin and racing sailboats.

3.3 Complexity of Algorithms 241

TABLE 2 The Computer Time Used by Algorithms.

Problem Size Bit Operations Used

n logn n n log n n2 2n n!

10 3 × 10−11 s 10−10 s 3 × 10−10 s 10−9 s 10−8 s 3 × 10−7 s

102 7 × 10−11 s 10−9 s 7 × 10−9 s 10−7 s 4 × 1011 yr *

103 1.0 × 10−10 s 10−8 s 1 × 10−7 s 10−5 s * *

104 1.3 × 10−10 s 10−7 s 1 × 10−6 s 10−3 s * *

105 1.7 × 10−10 s 10−6 s 2 × 10−5 s 0.1 s * *

106 2 × 10−10 s 10−5 s 2 × 10−4 s 0.17 min * *

computer being used. Often, instead of a big-Θ estimate on the worst-case time complexity of
an algorithm, we have only a big-O estimate. Note that a big-O estimate on the time complexity
of an algorithm provides an upper, but not a lower, bound on the worst-case time required for
the algorithm as a function of the input size. Nevertheless, for simplicity, we will often use
big-O estimates when describing the time complexity of algorithms, with the understanding
that big-Θ estimates would provide more information.

Table 2 displays the time needed to solve problems of various sizes with an algorithm using
the indicated number n of bit operations, assuming that each bit operation takes 10−11 seconds, a
reasonable estimate of the time required for a bit operation using the fastest computers available
in 2018. Times of more than 10100 years are indicated with an asterisk. In the future, these times
will decrease as faster computers are developed. We can use the times shown in Table 2 to see
whether it is reasonable to expect a solution to a problem of a specified size using an algorithm
with known worst-case time complexity when we run this algorithm on a modern computer.
Note that we cannot determine the exact time a computer uses to solve a problem with input of
a particular size because of a myriad of issues involving computer hardware and the particular
software implementation of the algorithm.

It is important to have a reasonable estimate for how long it will take a computer to solve a
problem. For instance, if an algorithm requires approximately 10 hours, it may be worthwhile
to spend the computer time (and money) required to solve this problem. But, if an algorithm
requires approximately 10 billion years to solve a problem, it would be unreasonable to use re-
sources to implement this algorithm. One of the most interesting phenomena of modern technol-
ogy is the tremendous increase in the speed andmemory space of computers. Another important
factor that decreases the time needed to solve problems on computers is parallel processing,
which is the technique of performing sequences of operations simultaneously.

Efficient algorithms, including most algorithms with polynomial time complexity, benefit

most from significant technology improvements. However, these technology improvements

offer little help in overcoming the complexity of algorithms of exponential or factorial time

complexity. Because of the increased speed of computation, increases in computer memory, and

the use of algorithms that take advantage of parallel processing, many problems that were con-

sidered impossible to solve five years ago are now routinely solved, and certainly five years from

now this statement will still be true. This is even true when the algorithms used are intractable.

Exercises

1. Give a big-O estimate for the number of operations

(where an operation is an addition or a multiplication)

used in this segment of an algorithm.

t := 0

for i := 1 to 3

for j := 1 to 4

t := t + ij

2. Give a big-O estimate for the number additions used in

this segment of an algorithm.

t := 0

for i := 1 to n

for j := 1 to n

t := t + i + j

242 3 / Algorithms

3. Give a big-O estimate for the number of operations,
where an operation is a comparison or a multiplication,
used in this segment of an algorithm (ignoring compar-
isons used to test the conditions in the for loops, where
a1, a2, ..., an are positive real numbers).

m := 0
for i := 1 to n

for j := i + 1 to n
m := max(aiaj, m)

4. Give a big-O estimate for the number of operations,
where an operation is an addition or a multiplication,
used in this segment of an algorithm (ignoring compar-
isons used to test the conditions in the while loop).

i := 1
t := 0
while i ≤ n

t := t + i

i := 2i

5. How many comparisons are used by the algorithm given
in Exercise 16 of Section 3.1 to find the smallest natural
number in a sequence of n natural numbers?

6. a) Use pseudocode to describe the algorithm that puts
the first four terms of a list of real numbers of arbitrary
length in increasing order using the insertion sort.

b) Show that this algorithm has time complexity O(1) in
terms of the number of comparisons used.

7. Suppose that an element is known to be among the first
four elements in a list of 32 elements. Would a lin-
ear search or a binary search locate this element more
rapidly?

8. Given a real number x and a positive integer k, determine
the number of multiplications used to find x2

k

starting
with x and successively squaring (to find x2, x4, and so
on). Is this a more efficient way to find x2

k

than by multi-

plying x by itself the appropriate number of times?

9. Give a big-O estimate for the number of comparisons

used by the algorithm that determines the number of 1s

in a bit string by examining each bit of the string to deter-

mine whether it is a 1 bit (see Exercise 25 of Section 3.1).

∗10. a) Show that this algorithm determines the number of 1

bits in the bit string S:

procedure bit count(S: bit string)

count := 0

while S ≠ 0

count := count + 1

S := S ∧ (S − 1)

return count {count is the number of 1s in S}

Here S − 1 is the bit string obtained by changing the

rightmost 1 bit of S to a 0 and all the 0 bits to the

right of this to 1s. [Recall that S ∧ (S − 1) is the bit-

wise AND of S and S − 1.]

b) Howmany bitwise AND operations are needed to find

the number of 1 bits in a string S using the algorithm

in part (a)?

11. a) Suppose we have n subsets S1, S2,… , Sn of the set

{1, 2,… , n}. Express a brute-force algorithm that de-

termines whether there is a disjoint pair of these sub-

sets. [Hint: The algorithm should loop through the

subsets; for each subset Si, it should then loop through

all other subsets; and for each of these other subsets

Sj, it should loop through all elements k in Si to deter-

mine whether k also belongs to Sj.]

b) Give a big-O estimate for the number of times the al-

gorithm needs to determine whether an integer is in

one of the subsets.

12. Consider the following algorithm, which takes as input a

sequence of n integers a1, a2,… , an and produces as out-

put a matrix M = {mij} where mij is the minimum term

in the sequence of integers ai, ai+1,… , aj for j ≥ i and

mij = 0 otherwise.

initializeM so that mij = ai if j ≥ i and mij = 0

otherwise

for i := 1 to n

for j := i + 1 to n

for k := i + 1 to j

mij := min(mij, ak)

return M= {mij} {mij is the minimum term of

ai, ai+1,… , aj}

a) Show that this algorithm uses O(n3) comparisons to

compute the matrixM.

b) Show that this algorithm uses Ω(n3) comparisons to
compute the matrix M. Using this fact and part (a),

conclude that the algorithms usesΘ(n3) comparisons.
[Hint: Only consider the cases where i ≤ n∕4 and

j ≥ 3n∕4 in the two outer loops in the algorithm.]

13. The conventional algorithm for evaluating a polyno-

mial anx
n + an−1x

n−1 +⋯ + a1x + a0 at x = c can be

expressed in pseudocode by

procedure polynomial(c, a0, a1,… , an: real numbers)

power := 1

y := a0
for i := 1 to n

power := power ∗ c

y := y + ai ∗ power

return y {y = anc
n + an−1c

n−1 +⋯ + a1c + a0}

where the final value of y is the value of the polynomial

at x = c.

a) Evaluate 3x2 + x + 1 at x = 2 by working through

each step of the algorithm showing the values as-

signed at each assignment step.

b) Exactly how many multiplications and additions are

used to evaluate a polynomial of degree n at x = c?

(Do not count additions used to increment the loop

variable.)

14. There is a more efficient algorithm (in terms of the

number of multiplications and additions used) for eval-

uating polynomials than the conventional algorithm de-

scribed in the previous exercise. It is called Horner’s

method. This pseudocode shows how to use this method

3.3 Complexity of Algorithms 243

to find the value of anx
n + an−1x

n−1 +⋯ + a1x + a0
at x = c.

procedure Horner(c, a0, a1, a2,… , an: real numbers)
y := an
for i := 1 to n

y := y ∗ c + an−i
return y {y = anc

n + an−1c
n−1 +⋯ + a1c + a0}

a) Evaluate 3x2 + x + 1 at x = 2 by working through
each step of the algorithm showing the values as-
signed at each assignment step.

b) Exactly how many multiplications and additions are
used by this algorithm to evaluate a polynomial of
degree n at x = c? (Do not count additions used to
increment the loop variable.)

15. What is the largest n for which one can solve within one
second a problem using an algorithm that requires f (n)
bit operations, where each bit operation is carried out in
10−9 seconds, with these functions f (n)?

a) log n b) n c) n log n

d) n2 e) 2n f) n!

16. What is the largest n for which one can solve within a

day using an algorithm that requires f (n) bit operations,

where each bit operation is carried out in 10−11 seconds,

with these functions f (n)?

a) log n b) 1000n c) n2

d) 1000n2 e) n3 f) 2n

g) 22n h) 22
n

17. What is the largest n for which one can solve within

a minute using an algorithm that requires f (n) bit op-

erations, where each bit operation is carried out in

10−12 seconds, with these functions f (n)?

a) log log n b) log n c) (log n)2

d) 1,000,000n e) n2 f) 2n

g) 2n
2

18. How much time does an algorithm take to solve a prob-

lem of size n if this algorithm uses 2n2 + 2n operations,
each requiring 10−9 seconds, with these values of n?

a) 10 b) 20 c) 50 d) 100

19. How much time does an algorithm using 250 operations

need if each operation takes these amounts of time?

a) 10−6 s b) 10−9 s c) 10−12 s

20. What is the effect in the time required to solve a prob-

lem when you double the size of the input from n to

2n, assuming that the number of milliseconds the algo-

rithm uses to solve the problem with input size n is each

of these functions? [Express your answer in the simplest

form possible, either as a ratio or a difference. Your an-

swer may be a function of n or a constant.]

a) log log n b) log n c) 100n

d) n log n e) n2 f) n3

g) 2n

21. What is the effect in the time required to solve a prob-

lem when you increase the size of the input from n to

n + 1, assuming that the number of milliseconds the al-

gorithm uses to solve the problem with input size n is

each of these functions? [Express your answer in the sim-

plest form possible, either as a ratio or a difference. Your

answer may be a function of n or a constant.]

a) log n b) 100n c) n2

d) n3 e) 2n f) 2n
2

g) n!

22. Determine the least number of comparisons, or best-case

performance,

a) required to find the maximum of a sequence of n in-

tegers, using Algorithm 1 of Section 3.1.

b) used to locate an element in a list of n terms with a

linear search.

c) used to locate an element in a list of n terms using a

binary search.

23. Analyze the average-case performance of the linear

search algorithm, if exactly half the time the element x

is not in the list, and if x is in the list, it is equally likely

to be in any position.

24. An algorithm is called optimal for the solution of a prob-

lem with respect to a specified operation if there is no al-

gorithm for solving this problem using fewer operations.

a) Show that Algorithm 1 in Section 3.1 is an optimal

algorithm with respect to the number of comparisons

of integers. [Note: Comparisons used for bookkeep-

ing in the loop are not of concern here.]

b) Is the linear search algorithm optimal with respect to

the number of comparisons of integers (not including

comparisons used for bookkeeping in the loop)?

25. Describe the worst-case time complexity, measured in

terms of comparisons, of the ternary search algorithm de-

scribed in Exercise 27 of Section 3.1.

26. Describe the worst-case time complexity, measured in

terms of comparisons, of the search algorithm described

in Exercise 28 of Section 3.1.

27. Analyze the worst-case time complexity of the algorithm

you devised in Exercise 29 of Section 3.1 for locating a

mode in a list of nondecreasing integers.

28. Analyze the worst-case time complexity of the algorithm

you devised in Exercise 30 of Section 3.1 for locating all

modes in a list of nondecreasing integers.

29. Analyze the worst-case time complexity of the algorithm

you devised in Exercise 33 of Section 3.1 for finding the

first term of a sequence of integers equal to some previ-

ous term.

30. Analyze the worst-case time complexity of the algorithm

you devised in Exercise 34 of Section 3.1 for finding all

terms of a sequence that are greater than the sum of all

previous terms.

31. Analyze the worst-case time complexity of the algorithm

you devised in Exercise 35 of Section 3.1 for finding the

first term of a sequence less than the immediately preced-

ing term.

32. Determine the worst-case complexity in terms of com-

parisons of the algorithm from Exercise 5 in Section 3.1

for determining all values that occur more than once in a

sorted list of integers.

244 3 / Algorithms

33. Determine the worst-case complexity in terms of com-

parisons of the algorithm from Exercise 9 in Section 3.1

for determiningwhether a string of n characters is a palin-

drome.

34. How many comparisons does the selection sort (see

preamble to Exercise 43 in Section 3.1) use to sort n

items? Use your answer to give a big-O estimate of the

complexity of the selection sort in terms of number of

comparisons for the selection sort.

35. Determine a big-O estimate for the worst-case complex-

ity in terms of number of comparisons used and the

number of terms swapped by the binary insertion sort de-

scribed in the preamble to Exercise 49 in Section 3.1.

36. Determine the number of character comparisons used by

the naive string matcher to look for a pattern of m char-

acters in a text with n characters if the first character of

the pattern does not occur in the text.

37. Determine a big-O estimate of the number of character

comparisons used by the naive string matcher to find all

occurrences of a pattern of m characters in a text with n

characters, in terms of the parameters m and n.

38. Determine big-O estimates for the algorithms for decid-

ing whether two strings are anagrams from parts (a) and

(b) of Exercise 31 of Section 3.1.

39. Determine big-O estimates for the algorithms for finding

the closest of n real numbers from parts (a) and (b) of

Exercise 32 of Section 3.1.

40. Show that the greedy algorithm for making change for n

cents using quarters, dimes, nickels, and pennies hasO(n)

complexity measured in terms of comparisons needed.

Exercises 41 and 42 deal with the problem of scheduling the

most talks possible given the start and end times of n talks.

41. Find the complexity of a brute-force algorithm for

scheduling the talks by examining all possible subsets of

the talks. [Hint: Use the fact that a set with n elements

has 2n subsets.]

42. Find the complexity of the greedy algorithm for schedul-

ing the most talks by adding at each step the talk with the

earliest end time compatible with those already sched-

uled (Algorithm 7 in Section 3.1). Assume that the

talks are not already sorted by earliest end time and as-

sume that the worst-case time complexity of sorting is

O(n log n).

43. Describe how the number of comparisons used in the

worst case changes when these algorithms are used to

search for an element of a list when the size of the list

doubles from n to 2n, where n is a positive integer.

a) linear search b) binary search

44. Describe how the number of comparisons used in the

worst case changes when the size of the list to be sorted

doubles from n to 2n, where n is a positive integer when

these sorting algorithms are used.

a) bubble sort b) insertion sort

c) selection sort (described in the preamble to Exer-

cise 43 in Section 3.1)

d) binary insertion sort (described in the preamble to Ex-

ercise 49 in Section 3.1)

An n × n matrix is called upper triangular if aij = 0 when-

ever i > j.

45. From the definition of the matrix product, describe an al-

gorithm in English for computing the product of two up-

per triangular matrices that ignores those products in the

computation that are automatically equal to zero.

46. Give a pseudocode description of the algorithm in Exer-

cise 45 for multiplying two upper triangular matrices.

47. How many multiplications of entries are used by the al-

gorithm found in Exercise 45 for multiplying two n × n

upper triangular matrices?

In Exercises 48–49 assume that the number of multiplications

of entries used to multiply a p × q matrix and a q × r matrix

is pqr.

48. What is the best order to form the product ABC if A,

B, and C are matrices with dimensions 3 × 9, 9 × 4, and

4 × 2, respectively?

49. What is the best order to form the productABCD if A, B,

C, and D are matrices with dimensions 30 × 10, 10 × 40,

40 × 50, and 50 × 30, respectively?

Key Terms and Results

TERMS

algorithm: a finite sequence of precise instructions for per-

forming a computation or solving a problem

searching algorithm: the problem of locating an element in a

list

linear search algorithm: a procedure for searching a list ele-

ment by element

binary search algorithm: a procedure for searching an or-

dered list by successively splitting the list in half

sorting: the reordering of the elements of a list into prescribed

order

string searching: given a string, determining all the occur-

rences where this string occurs within a longer string

f (x) is O(g(x)): the fact that |f (x)| ≤ C|g(x)| for all x > k for

some constants C and k

witness to the relationship f (x) is O(g(x)): a pairC and k such

that |f (x)| ≤ C|g(x)| whenever x > k

f (x) is
(g(x)): the fact that |f (x)| ≥ C|g(x)| for all x > k for

some positive constants C and k

f (x) is �(g(x)): the fact that f (x) is both O(g(x)) and Ω(g(x))

time complexity: the amount of time required for an algorithm

to solve a problem

Review Questions 245

space complexity: the amount of space in computer memory
required for an algorithm to solve a problem

worst-case time complexity: the greatest amount of time re-
quired for an algorithm to solve a problem of a given size

average-case time complexity: the average amount of time
required for an algorithm to solve a problem of a given size

algorithmic paradigm: a general approach for constructing
algorithms based on a particular concept

brute force: the algorithmic paradigm based on constructing
algorithms for solving problems in a naive manner from the
statement of the problem and definitions

greedy algorithm: an algorithm that makes the best choice at
each step according to some specified condition

tractable problem: a problem for which there is a worst-case
polynomial-time algorithm that solves it

intractable problem: a problem for which no worst-case
polynomial-time algorithm exists for solving it

solvable problem: a problem that can be solved by an algo-
rithm

unsolvable problem: a problem that cannot be solved by an
algorithm

RESULTS

linear and binary search algorithms: (given in Section 3.1)

bubble sort: a sorting that uses passes where successive items
are interchanged if they are in the wrong order

insertion sort: a sorting that at the jth step inserts the jth ele-
ment into the correct position in the list, when the first j − 1
elements of the list are already sorted

The linear search has O(n) worst case time complexity.
The binary search has O(log n) worst case time complexity.

The bubble and insertion sorts have O(n2) worst case time
complexity.

log n! is O(n log n).

If f1(x) is O(g1(x)) and f2(x) is O(g2(x)), then (f1 + f2)(x)
is O(max(g1(x), g2(x))) and (f1f2)(x) is O((g1g2(x)).

If a0, a1,… , an are real numbers with an ≠ 0, then anx
n +

an−1x
n−1 +⋯ + a1x + a0 is Θ(xn), and hence O(n) and

Ω(n).

Review Questions

1. a) Define the term algorithm.

b) What are the different ways to describe algorithms?

c) What is the difference between an algorithm for solv-

ing a problem and a computer program that solves this

problem?

2. a) Describe, using English, an algorithm for finding the
largest integer in a list of n integers.

b) Express this algorithm in pseudocode.

c) How many comparisons does the algorithm use?

3. a) State the definition of the fact that f (n) is O(g(n)),
where f (n) and g(n) are functions from the set of pos-
itive integers to the set of real numbers.

b) Use the definition of the fact that f (n) is O(g(n))
directly to prove or disprove that n2 + 18n + 107 is
O(n3).

c) Use the definition of the fact that f (n) is
O(g(n)) directly to prove or disprove that n3 is
O(n2 + 18n + 107).

4. List these functions so that each function is big-O of

the next function in the list: (log n)3, n3∕1,000,000,
√
n,

100n + 101, 3n, n!, 2nn2.

5. a) How can you produce a big-O estimate for a function
that is the sum of different terms where each term is

the product of several functions?

b) Give a big-O estimate for the function f (n) =
(n! + 1)(2n + 1) + (nn−2 + 8nn−3)(n3 + 2n). For the

function g in your estimate f (x) is O(g(x)), use a sim-

ple function of smallest possible order.

6. a) Define what the worst-case time complexity, average-
case time complexity, and best-case time complexity
(in terms of comparisons) mean for an algorithm that
finds the smallest integer in a list of n integers.

b) What are the worst-case, average-case, and best-case
time complexities, in terms of comparisons, of the al-
gorithm that finds the smallest integer in a list of n
integers by comparing each of the integers with the
smallest integer found so far?

7. a) Describe the linear search and binary search algo-
rithm for finding an integer in a list of integers in in-
creasing order.

b) Compare the worst-case time complexities of these
two algorithms.

c) Is one of these algorithms always faster than the other
(measured in terms of comparisons)?

8. a) Describe the bubble sort algorithm.

b) Use the bubble sort algorithm to sort the list 5, 2, 4,
1, 3.

c) Give a big-O estimate for the number of comparisons
used by the bubble sort.

9. a) Describe the insertion sort algorithm.

b) Use the insertion sort algorithm to sort the list 2, 5, 1,
4, 3.

c) Give a big-O estimate for the number of comparisons
used by the insertion sort.

10. a) Explain the concept of a greedy algorithm.

b) Provide an example of a greedy algorithm that pro-
duces an optimal solution and explain why it produces
an optimal solution.

246 3 / Algorithms

c) Provide an example of a greedy algorithm that does
not always produce an optimal solution and explain
why it fails to do so.

11. Define what it means for a problem to be tractable and
what it means for a problem to be solvable.

Supplementary Exercises

1. a) Describe an algorithm for locating the last occurrence
of the largest number in a list of integers.

b) Estimate the number of comparisons used.

2. a) Describe an algorithm for finding the first and second
largest elements in a list of integers.

b) Estimate the number of comparisons used.

3. a) Give an algorithm to determine whether a bit string
contains a pair of consecutive zeros.

b) How many comparisons does the algorithm use?

4. a) Suppose that a list contains integers that are in order
of largest to smallest and an integer can appear repeat-
edly in this list. Devise an algorithm that locates all
occurrences of an integer x in the list.

b) Estimate the number of comparisons used.

5. a) Adapt Algorithm 1 in Section 3.1 to find the maxi-
mum and the minimum of a sequence of n elements
by employing a temporary maximum and a temporary
minimum that is updated as each successive element
is examined.

b) Describe the algorithm from part (a) in pseudocode.

c) How many comparisons of elements in the sequence
are carried out by this algorithm? (Do not count com-
parisons used to determine whether the end of the se-
quence has been reached.)

6. a) Describe in detail (and in English) the steps of an al-
gorithm that finds the maximum and minimum of a
sequence of n elements by examining pairs of suc-
cessive elements, keeping track of a temporary maxi-
mum and a temporary minimum. If n is odd, both the
temporary maximum and temporary minimum should
initially equal the first term, and if n is even, the tem-
porary minimum and temporary maximum should be
found by comparing the initial two elements. The tem-
porary maximum and temporary minimum should be
updated by comparing them with the maximum and
minimum of the pair of elements being examined.

b) Express the algorithm described in part (a) in pseu-
docode.

c) How many comparisons of elements of the sequence
are carried out by this algorithm? (Do not count com-
parisons used to determine whether the end of the se-
quence has been reached.) How does this compare to
the number of comparisons used by the algorithm in
Exercise 5?

∗7. Show that the worst-case complexity in terms of compar-
isons of an algorithm that finds the maximum and mini-
mum of n elements is at least ⌈3n∕2⌉ − 2.

8. Devise an efficient algorithm for finding the second

largest element in a sequence of n elements and deter-

mine the worst-case complexity of your algorithm.

9. Devise an algorithm that finds all equal pairs of sums of

two terms of a sequence of n numbers, and determine the

worst-case complexity of your algorithm.

10. Devise an algorithm that finds the closest pair of integers

in a sequence of n integers, and determine the worst-case

complexity of your algorithm. [Hint: Sort the sequence.

Use the fact that sorting can be done with worst-case time

complexity O(n log n).]

The shaker sort (or bidirectional bubble sort) successively

compares pairs of adjacent elements, exchanging them if they

are out of order, and alternately passing through the list from

the beginning to the end and then from the end to the begin-

ning until no exchanges are needed.

11. Show the steps used by the shaker sort to sort the list 3,

5, 1, 4, 6, 2.

12. Express the shaker sort in pseudocode.

13. Show that the shaker sort hasO(n2) complexity measured

in terms of the number of comparisons it uses.

14. Explain why the shaker sort is efficient for sorting lists

that are already in close to the correct order.

15. Show that (n log n + n2)3 is O(n6).

16. Show that 8x3 + 12x + 100 log x is O(x3).

17. Give a big-O estimate for (x2 + x(log x)3) ⋅ (2x + x3).

18. Find a big-O estimate for
∑n

j=1
j(j + 1).

∗19. Show that n! is not O(2n).

∗20. Show that nn is not O(n!).

21. Find all pairs of functions of the same order in this list

of functions: n2 + (log n)2, n2 + n, n2 + log 2n + 1, (n +
1)3 − (n − 1)3, and (n + log n)2.

22. Find all pairs of functions of the same order in this list

of functions n2 + 2n, n2 + 2100, n2 + 22n, n2 + n!, n2 + 3n,

and (n2 + 1)2.

23. Find an integer n with n > 2 for which n2
100

< 2n.

24. Find an integer n with n > 2 for which (log n)2
100

<

√
n.

∗25. Arrange the functions nn, (log n)2, n1.0001, (1.0001)n,

2
√
log2 n, and n(log n)1001 in a list so that each function is

big-O of the next function. [Hint: To determine the rela-
tive size of some of these functions, take logarithms.]

∗26. Arrange the function 2100n, 2n
2

, 2n!, 22
n

, nlog n,
n log n log log n, n3∕2, n(log n)3∕2, and n4∕3(log n)2 in a
list so that each function is big-O of the next function.
[Hint: To determine the relative size of some of these
functions, take logarithms.]

∗27. Give an example of two increasing functions f (n) and g(n)
from the set of positive integers to the set of positive inte-
gers such that neither f (n) is O(g(n)) nor g(n) is O(f (n)).

Supplementary Exercises 247

28. Show that if the denominations of coins are c0, c1,… , ck,
where k is a positive integer and c is a positive integer,
c > 1, the greedy algorithm always produces change us-
ing the fewest coins possible.

29. a) Use pseudocode to specify a brute-force algorithm
that determines when given as input a sequence of n
positive integers whether there are two distinct terms
of the sequence that have as sum a third term. The al-
gorithm should loop through all triples of terms of the
sequence, checking whether the sum of the first two
terms equals the third.

b) Give a big-O estimate for the complexity of the brute-
force algorithm from part (a).

30. a) Devise amore efficient algorithm for solving the prob-

lem described in Exercise 29 that first sorts the in-

put sequence and then checks for each pair of terms

whether their difference is in the sequence.

b) Give a big-O estimate for the complexity of this al-

gorithm. Is it more efficient than the brute-force algo-

rithm from Exercise 29?

Suppose we have s men and s women each with their prefer-

ence lists for themembers of the opposite gender, as described

in the preamble to Exercise 64 in Section 3.1. We say that a

woman w is a valid partner for a man m if there is some sta-

ble matching in which they are paired. Similarly, a man m is a

valid partner for a woman w if there is some stable matching

in which they are paired. A matching in which each man is as-

signed his valid partner ranking highest on his preference list

is calledmale optimal, and a matching in which each woman

is assigned her valid partner ranking lowest on her preference

list is called female pessimal.

31. Find all valid partners for each man and each woman if

there are three men m1, m2, and m3 and three women w1,

w2, w3 with these preference rankings of the men for the

women, from highest to lowest: m1: w3, w1, w2; m2: w3,

w2, w1; m3: w2, w3, w1; and with these preference rank-

ings of the women for the men, from highest to lowest:

w1: m3, m2, m1; w2: m1, m3, m2; w3: m3, m2, m1.

∗32. Show that the deferred acceptance algorithm given in the

preamble to Exercise 65 of Section 3.1, always produces

a male optimal and female pessimal matching.

33. Define what it means for a matching to be female optimal

and for a matching to be male pessimal.

∗34. Show that when woman do the proposing in the deferred

acceptance algorithm, the matching produced is female

optimal and male pessimal.

In Exercises 35 and 36 we consider variations on the problem

of finding stable matchings of men and women described in

the preamble to Exercise 65 in Section 3.1.

∗35. In this exercise we consider matching problems where

there may be different numbers of men and women, so

that it is impossible to match everyone with a member of

the opposite gender.

a) Extend the definition of a stable matching from that

given in the preamble to Exercise 64 in Section 3.1

to cover the case where there are unequal numbers of

men and women. Avoid all cases where a man and a

woman would prefer each other to their current sit-

uation, including those involving unmatched people.

(Assume that an unmatched person prefers a match

with a member of the opposite gender to remaining

unmatched.)

b) Adapt the deferred acceptance algorithm to find sta-

ble matchings, using the definition of stable match-

ings from part (a), when there are different numbers

of men and women.

c) Prove that all matchings produced by the algorithm

from part (b) are stable, according to the definition

from part (a).

∗36. In this exercise we consider matching problems where

some man-woman pairs are not allowed.

a) Extend the definition of a stable matching to cover the

situation where there are the same number of men and

women, but certain pairs of men and women are for-

bidden. Avoid all cases where a man and a woman

would prefer each other to their current situation, in-

cluding those involving unmatched people.

b) Adapt the deferred acceptance algorithm to find sta-

ble matchings when there are the same number of men

and women, but certain man-woman pairs are forbid-

den. Be sure to consider people who are unmatched at

the end of the algorithm. (Assume that an unmatched

person prefers a match with a member of the opposite

gender who is not a forbidden partner to remaining

unmatched.)

c) Prove that all matchings produced by the algorithm

from (b) are stable, according to the definition in

part (a).

Exercises 37–40 deal with the problem of scheduling n jobs

on a single processor. To complete job j, the processor must

run job j for time tj without interruption. Each job has a dead-

line dj. If we start job j at time sj, it will be completed at

time ej = sj + tj. The lateness of the job measures how long

it finishes after its deadline, that is, the lateness of job j is

max(0, ej − dj). We wish to devise a greedy algorithm that

minimizes the maximum lateness of a job among the n jobs.

37. Suppose we have five jobs with specified required times

and deadlines: t1 = 25, d1 = 50; t2 = 15, d2 = 60; t3 =
20, d3 = 60; t4 = 5, d4 = 55; t5 = 10, d5 = 75. Find the

maximum lateness of any jobwhen the jobs are scheduled

in this order (and they start at time 0): Job 3, Job 1, Job 4,

Job 2, Job 5. Answer the same question for the schedule

Job 5, Job 4, Job 3, Job 1, Job 2.

38. The slackness of a job requiring time t and with dead-

line d is d − t, the difference between its deadline and the

time it requires. Find an example that shows that schedul-

ing jobs by increasing slackness does not always yield a

schedule with the smallest possible maximum lateness.

39. Find an example that shows that scheduling jobs in or-

der of increasing time required does not always yield a

schedule with the smallest possible maximum lateness.

248 3 / Algorithms

∗40. Prove that scheduling jobs in order of increasing dead-
lines always produces a schedule that minimizes the
maximum lateness of a job. [Hint: First show that for a
schedule to be optimal, jobs must be scheduled with no
idle time between them and so that no job is scheduled
before another with an earlier deadline.]

41. Suppose that we have a knapsack with total capac-
ity of W kg. We also have n items where item j has
mass wj. The knapsack problem asks for a subset of
these n items with the largest possible total mass not
exceedingW.

a) Devise a brute-force algorithm for solving the knap-
sack problem.

b) Solve the knapsack problem when the capacity of
the knapsack is 18 kg and there are five items: a
5-kg sleeping bag, an 8-kg tent, a 7-kg food pack,
a 4-kg container of water, and an 11-kg portable
stove.

In Exercises 42–46 we will study the problem of load balanc-

ing. The input to the problem is a collection of p processors

and n jobs, tj is the time required to run job j, jobs run without

interruption on a single machine until finished, and a proces-

sor can run only one job at a time. The load Lk of processor

k is the sum over all jobs assigned to processor k of the times

required to run these jobs. The makespan is the maximum

load over all the p processors. The load balancing problem

asks for an assignment of jobs to processors to minimize the

makespan.

42. Suppose we have three processors and five jobs requir-

ing times t1 = 3, t2 = 5, t3 = 4, t4 = 7, and t5 = 8. Solve

the load balancing problem for this input by finding the

assignment of the five jobs to the three processors that

minimizes the makespan.

43. Suppose that L∗ is the minimum makespan when p pro-

cessors are given n jobs, where tj is the time required to

run job j.

a) Show that L∗ ≥ maxj=1,2,…,n tj.

b) Show that L∗ ≥ 1

p

∑n

j=1
tj.

44. Write out in pseudocode the greedy algorithm that goes

through the jobs in order and assigns each job to the pro-

cessor with the smallest load at that point in the algo-

rithm.

45. Run the algorithm from Exercise 44 on the input given in

Exercise 42.

An approximation algorithm for an optimization problem

produces a solution guaranteed to be close to an optimal so-

lution. More precisely, suppose that the optimization problem

asks for an input S that minimizes F(X) where F is some func-

tion of the input X. If an algorithm always finds an input T

with F(T) ≤ cF(S), where c is a fixed positive real number,

the algorithm is called a c-approximation algorithm for the

problem.

∗46. Prove that the algorithm from Exercise 44 is a 2-

approximation algorithm for the load balancing problem.

[Hint: Use both parts of Exercise 43.]

Computer Projects

Write programs with these inputs and outputs.

1. Given a list of n integers, find the largest integer in the list.

2. Given a list of n integers, find the first and last occur-

rences of the largest integer in the list.

3. Given a list of n distinct integers, determine the position

of an integer in the list using a linear search.

4. Given an ordered list of n distinct integers, determine the

position of an integer in the list using a binary search.

5. Given a list of n integers, sort them using a bubble sort.

6. Given a list of n integers, sort them using an insertion sort.

7. Given two strings of characters use the naive string

matching algorithm to determine whether the shorter

string occurs in the longer string.

8. Given an integer n, use the cashier’s algorithm to find
the change for n cents using quarters, dimes, nickels, and
pennies.

9. Given the starting and ending times of n talks, use the
appropriate greedy algorithm to schedule the most talks
possible in a single lecture hall.

10. Given an ordered list of n integers and an integer x in the
list, find the number of comparisons used to determine
the position of x in the list using a linear search and using
a binary search.

11. Given a list of integers, determine the number of compar-
isons used by the bubble sort and by the insertion sort to
sort this list.

Computations and Explorations

Use a computational program or programs you have written to do these exercises.

1. We know that nb is O(dn) when b and d are positive num-
bers with d ≥ 2. Give values of the constants C and k such

that nb ≤ Cdn whenever x > k for each of these sets of val-
ues: b = 10, d = 2; b = 20, d = 3; b = 1000, d = 7.

Writing Projects 249

2. Compute the change for different values of n with coins of

different denominations using the cashier’s algorithm and

determine whether the smallest number of coins was used.

Can you find conditions so that the cashier’s algorithm is

guaranteed to use the fewest coins possible?

3. Using a generator of random orderings of the integers

1, 2,… , n, find the number of comparisons used by the

bubble sort, insertion sort, binary insertion sort, and

selection sort to sort these integers.

4. Collect experimental evidence comparing the number of

comparisons used by the sorting algorithms in Question 3

when used to sort sequences that only have a small fraction

of terms out of order.

∗5. Write a program that animates the progress of all the sort-

ing algorithms in Question 3 when given the numbers from

1 to 100 in random order.

Writing Projects

Respond to these with essays using outside sources.

1. Examine the history of the word algorithm and describe

the use of this word in early writings.

2. Look up Bachmann’s original introduction of big-O no-

tation. Explain how he and others have used this notation.

3. Explain how sorting algorithms can be classified into a

taxonomy based on the underlying principle on which

they are based.

4. Describe the radix sort algorithm.

5. Describe some of the different algorithms for string

matching.

6. Describe some of the different applications of string

matching in bioinformatics.

7. Describe the historic trends in how quickly processors

can perform operations and use these trends to estimate

how quickly processors will be able to perform operations

in the next 20 years.

8. Develop a detailed list of algorithmic paradigms and pro-

vide examples using each of these paradigms.

9. Explain what the Turing Award is and describe the cri-

teria used to select winners. List six past winners of the

award and why they received the award.

10. Describe what is meant by a parallel algorithm. Explain

how the pseudocode used in this book can be extended to

handle parallel algorithms.

11. Explain how the complexity of parallel algorithms can be

measured. Give some examples to illustrate this concept,

showing how a parallel algorithm can work more quickly

than one that does not operate in parallel.

12. Describe six different NP-complete problems.

13. Demonstrate how one of the many different NP-complete

problems can be reduced to the satisfiability problem.

540 8 / Advanced Counting Techniques

∗57. Dynamic programming can be used to develop
an algorithm for solving the matrix-chain multi-
plication problem introduced in Section 3.3. This
is the problem of determining how the product
A1A2⋯An can be computed using the fewest
integer multiplications, where A1,A2,… ,An are
m1 × m2, m2 × m3,… , mn × mn+1 matrices, respectively,
and each matrix has integer entries. Recall that by the
associative law, the product does not depend on the order
in which the matrices are multiplied.

a) Show that the brute-force method of determining the
minimumnumber of integermultiplications needed to
solve amatrix-chainmultiplication problem has expo-
nential worst-case complexity. [Hint: Do this by first
showing that the order of multiplication of matrices
is specified by parenthesizing the product. Then, use
Example 5 and the result of part (c) of Exercise 43 in
Section 8.4.]

b) Denote by Aij the product AiAi+1… ,Aj,
and M(i, j) the minimum number of integer mul-
tiplications required to find Aij. Show that if the

least number of integer multiplications are used to
compute Aij, where i < j, by splitting the product
into the product of Ai through Ak and the prod-
uct of Ak+1 through Aj, then the first k terms must
be parenthesized so that Aik is computed in the
optimal way using M(i, k) integer multiplications,
and Ak+1,j must be parenthesized so that Ak+1,j is
computed in the optimal way using M(k + 1, j) inte-
ger multiplications.

c) Explain why part (b) leads to the recurrence
relation M(i, j) = mini≤k<j(M(i, k) +M(k + 1, j) +
mimk+1mj+1) if 1 ≤ i ≤ j < j ≤ n.

d) Use the recurrence relation in part (c) to construct
an efficient algorithm for determining the order
the n matrices should be multiplied to use the min-
imum number of integer multiplications. Store the
partial results M(i, j) as you find them so that your
algorithm will not have exponential complexity.

e) Show that your algorithm from part (d) has O(n3)
worst-case complexity in terms of multiplications of
integers.

8.2 Solving Linear Recurrence Relations

8.2.1 Introduction

A wide variety of recurrence relations occur in models. Some of these recurrence relations
Links

can be solved using iteration or some other ad hoc technique. However, one important class of
recurrence relations can be explicitly solved in a systematic way. These are recurrence relations
that express the terms of a sequence as linear combinations of previous terms.

Definition 1 A linear homogeneous recurrence relation of degree k with constant coefficients is a recur-
rence relation of the form

an = c1an−1 + c2an−2 +⋯ + ckan−k,

where c1, c2,… , ck are real numbers, and ck ≠ 0.

The recurrence relation in the definition is linear because the right-hand side is a sum of pre-
vious terms of the sequence each multiplied by a function of n. The recurrence relation is ho-
mogeneous because no terms occur that are not multiples of the ajs. The coefficients of the
terms of the sequence are all constants, rather than functions that depend on n. The degree
is k because an is expressed in terms of the previous k terms of the sequence.

A consequence of the second principle of mathematical induction is that a sequence satis-
fying the recurrence relation in the definition is uniquely determined by this recurrence relation
and the k initial conditions

a0 = C0, a1 = C1,… , ak−1 = Ck−1.

EXAMPLE 1 The recurrence relation Pn = (1.11)Pn−1 is a linear homogeneous recurrence relation of degree
one. The recurrence relation fn = fn−1 + fn−2 is a linear homogeneous recurrence relation of

8.2 Solving Linear Recurrence Relations 541

degree two. The recurrence relation an = an−5 is a linear homogeneous recurrence relation of
degree five. ◂

To help clarify the definition of linear homogeneous recurrence relations with constant co-
efficients, we will now provide examples of recurrence relations each lacking one of the defining
properties.

EXAMPLE 2 The recurrence relation an = an−1 + a
2
n−2

is not linear. The recurrence relation Hn = 2Hn−1 + 1
is not homogeneous. The recurrence relation Bn = nBn−1 does not have constant coefficients.◂

Linear homogeneous recurrence relations are studied for two reasons. First, they often occur
in modeling of problems. Second, they can be systematically solved.

8.2.2 Solving Linear Homogeneous Recurrence Relations

with Constant Coefficients

Recurrence relations may be difficult to solve, but fortunately this is not the case for linear
homogenous recurrence relations with constant coefficients. We can use two key ideas to find
all their solutions. First, these recurrence relations have solutions of the form an = r

n, where
r is a constant. To see this, observe that an = r

n is a solution of the recurrence relation an =
c1an−1 + c2an−2 +⋯ + ckan−k if and only if

rn = c1r
n−1 + c2r

n−2 +⋯ + ckr
n−k

.

When both sides of this equation are divided by rn−k (when r ≠ 0) and the right-hand side is
subtracted from the left, we obtain the equation

rk − c1r
k−1 − c2r

k−2 −⋯ − ck−1r − ck = 0.

Consequently, the sequence {an} with an = r
n where r ≠ 0 is a solution if and only if r is a

solution of this last equation.We call this the characteristic equation of the recurrence relation.
The solutions of this equation are called the characteristic roots of the recurrence relation. As
we will see, these characteristic roots can be used to give an explicit formula for all the solutions
of the recurrence relation.

The other key observation is that a linear combination of two solutions of a linear homoge-
neous recurrence relation is also a solution. To see this, suppose that sn and tn are both solutions
of an = c1an−1 + c2an−2 +⋯ + ckan−k. Then

sn = c1sn−1 + c2sn−2 +⋯ + cksn−k

and

tn = c1tn−1 + c2tn−2 +⋯ + cktn−k.

Now suppose that b1 and b2 are real numbers. Then

b1sn + b2tn = b1(c1sn−1 + c2sn−2 +⋯ + cksn−k) + b2(c1tn−1 + c2tn−2 +⋯ + cktn−k)

= c1(b1sn−1 + b2tn−1) + c2(b1sn−2 + b2tn−2) +⋯ + ck(b1sn−k + bktn−k).

This means that b1sn + b2tn is also a solution of the same linear homogeneous recurrence rela-
tion.

Using these key observations, we will show how to solve linear homogeneous recurrence
relations with constant coefficients.

542 8 / Advanced Counting Techniques

THE DEGREE TWO CASE We now turn our attention to linear homogeneous recurrence
relations of degree two. First, consider the case when there are two distinct characteristic roots.

THEOREM 1 Let c1 and c2 be real numbers. Suppose that r2 − c1r − c2 = 0 has two distinct roots r1
and r2. Then the sequence {an} is a solution of the recurrence relation an = c1an−1 + c2an−2
if and only if an = �1r

n
1
+ �2r

n
2
for n = 0, 1, 2,… , where �1 and �2 are constants.

Proof: We must do two things to prove the theorem. First, it must be shown that if r1 and r2
are the roots of the characteristic equation, and �1 and �2 are constants, then the sequence {an}
with an = �1r

n
1
+ �2r

n
2
is a solution of the recurrence relation. Second, it must be shown that if

the sequence {an} is a solution, then an = �1r
n
1
+ �2r

n
2
for some constants �1 and �2.

We now show that if an = �1r
n
1
+ �2r

n
2
, then the sequence {an} is a solution of

the recurrence relation. Because r1 and r2 are roots of r2 − c1r − c2 = 0, it follows
that r2

1
= c1r1 + c2 and r

2
2
= c1r2 + c2.

From these equations, we see that

c1an−1 + c2an−2 = c1(�1r
n−1
1

+ �2r
n−1
2

) + c2(�1r
n−2
1

+ �2r
n−2
2

)

= �1r
n−2
1

(c1r1 + c2) + �2r
n−2
2

(c1r2 + c2)

= �1r
n−2
1
r2
1
+ �2r

n−2
2
r2
2

= �1r
n
1
+ �2r

n
2

= an.

This shows that the sequence {an}with an = �1r
n
1
+ �2r

n
2
is a solution of the recurrence relation.

To show that every solution {an} of the recurrence relation an = c1an−1 + c2an−2
has an = �1r

n
1
+ �2r

n
2
for n = 0, 1, 2,… , for some constants �1 and �2, suppose that {an} is a

solution of the recurrence relation, and the initial conditions a0 = C0 and a1 = C1 hold. It will
be shown that there are constants �1 and �2 such that the sequence {an} with an = �1r

n
1
+ �2r

n
2

satisfies these same initial conditions. This requires that

a0 = C0 = �1 + �2,

a1 = C1 = �1r1 + �2r2.

We can solve these two equations for �1 and �2. From the first equation it follows that
�2 = C0 − �1. Inserting this expression into the second equation gives

C1 = �1r1 + (C0 − �1)r2.

Hence,

C1 = �1(r1 − r2) + C0r2.

This shows that

�1 =
C1 − C0r2

r1 − r2

and

�2 = C0 − �1 = C0 −
C1 − C0r2

r1 − r2
=
C0r1 − C1

r1 − r2
,

8.2 Solving Linear Recurrence Relations 543

where these expressions for �1 and �2 depend on the fact that r1 ≠ r2. (When r1 = r2, this the-
orem is not true.) Hence, with these values for �1 and �2, the sequence {an} with �1r

n
1
+ �2r

n
2

satisfies the two initial conditions.
We know that {an} and {�1r

n
1
+ �2r

n
2
} are both solutions of the recurrence relation

an = c1an−1 + c2an−2 and both satisfy the initial conditions when n = 0 and n = 1. Because
there is a unique solution of a linear homogeneous recurrence relation of degree two with two
initial conditions, it follows that the two solutions are the same, that is, an = �1r

n
1
+ �2r

n
2
for

all nonnegative integers n. We have completed the proof by showing that a solution of the lin-
ear homogeneous recurrence relation with constant coefficients of degree two must be of the
form an = �1r

n
1
+ �2r

n
2
, where �1 and �2 are constants.

The characteristic roots of a linear homogeneous recurrence relation with constant coef-
ficients may be complex numbers. Theorem 1 (and also subsequent theorems in this section)
still applies in this case. Recurrence relations with complex characteristic roots will not be dis-
cussed in the text. Readers familiar with complex numbers may wish to solve Exercises 38
and 39.

Examples 3 and 4 show how to use Theorem 1 to solve recurrence relations.

EXAMPLE 3 What is the solution of the recurrence relation

an = an−1 + 2an−2

with a0 = 2 and a1 = 7?

Solution: Theorem 1 can be used to solve this problem. The characteristic equation of the re-

Extra

Examples

currence relation is r2 − r − 2 = 0. Its roots are r = 2 and r = −1. Hence, the sequence {an} is
a solution to the recurrence relation if and only if

an = �12
n + �2(−1)

n,

for some constants �1 and �2. From the initial conditions, it follows that

a0 = 2 = �1 + �2,

a1 = 7 = �1 ⋅ 2 + �2 ⋅ (−1).

Solving these two equations shows that �1 = 3 and �2 = −1. Hence, the solution to the recur-
rence relation and initial conditions is the sequence {an} with

an = 3 ⋅ 2n − (−1)n. ◂

EXAMPLE 4 Find an explicit formula for the Fibonacci numbers.

Solution: Recall that the sequence of Fibonacci numbers satisfies the recurrence relation fn =
fn−1 + fn−2 and also satisfies the initial conditions f0 = 0 and f1 = 1. The roots of the character-

istic equation r2 − r − 1 = 0 are r1 = (1 +
√
5)∕2 and r2 = (1 −

√
5)∕2. Therefore, from The-

orem 1 it follows that the Fibonacci numbers are given by

fn = �1

(
1 +

√
5

2

)n

+ �2

(
1 −

√
5

2

)n

,

544 8 / Advanced Counting Techniques

for some constants �1 and �2. The initial conditions f0 = 0 and f1 = 1 can be used to find these
constants. We have

f0 = �1 + �2 = 0,

f1 = �1

(
1 +

√
5

2

)
+ �2

(
1 −

√
5

2

)
= 1.

The solution to these simultaneous equations for �1 and �2 is

�1 = 1∕
√
5, �2 = −1∕

√
5.

Consequently, the Fibonacci numbers are given by

fn =
1√
5

(
1 +

√
5

2

)n

−
1√
5

(
1 −

√
5

2

)n

.

◂

Theorem 1 does not apply when there is one characteristic root of multiplicity two. If this
happens, then an = nr

n
0
is another solution of the recurrence relation when r0 is a root of multi-

plicity two of the characteristic equation. Theorem 2 shows how to handle this case.

THEOREM 2 Let c1 and c2 be real numbers with c2 ≠ 0. Suppose that r2 − c1r − c2 = 0 has only one root
r0. A sequence {an} is a solution of the recurrence relation an = c1an−1 + c2an−2 if and only
if an = �1r

n
0
+ �2nr

n
0
, for n = 0, 1, 2,… , where �1 and �2 are constants.

The proof of Theorem 2 is left as Exercise 10. Example 5 illustrates the use of this theorem.

EXAMPLE 5 What is the solution of the recurrence relation

an = 6an−1 − 9an−2

with initial conditions a0 = 1 and a1 = 6?

Solution: The only root of r2 − 6r + 9 = 0 is r = 3. Hence, the solution to this recurrence rela-
tion is

an = �13
n + �2n3

n

for some constants �1 and �2. Using the initial conditions, it follows that

a0 = 1 = �1,

a1 = 6 = �1 ⋅ 3 + �2 ⋅ 3.

Solving these two equations shows that �1 = 1 and �2 = 1. Consequently, the solution to this
recurrence relation and the initial conditions is

an = 3n + n3n.
◂

8.2 Solving Linear Recurrence Relations 545

THE GENERAL CASE We will now state the general result about the solution of linear ho-
mogeneous recurrence relations with constant coefficients, where the degree may be greater

than two, under the assumption that the characteristic equation has distinct roots. The proof of

this result will be left as Exercise 16.

THEOREM 3 Let c1, c2,… , ck be real numbers. Suppose that the characteristic equation

rk − c1r
k−1 −⋯ − ck = 0

has k distinct roots r1, r2,… , rk. Then a sequence {an} is a solution of the recurrence relation

an = c1an−1 + c2an−2 +⋯ + ckan−k

if and only if

an = �1r
n
1
+ �2r

n
2
+⋯ + �kr

n
k

for n = 0, 1, 2,… , where �1, �2,… , �k are constants.

We illustrate the use of the theorem with Example 6.

EXAMPLE 6 Find the solution to the recurrence relation

an = 6an−1 − 11an−2 + 6an−3

with the initial conditions a0 = 2, a1 = 5, and a2 = 15.

Solution: The characteristic polynomial of this recurrence relation is

r3 − 6r2 + 11r − 6.

The characteristic roots are r = 1, r = 2, and r = 3, because r3 − 6r2 + 11r − 6 =
(r − 1)(r − 2)(r − 3). Hence, the solutions to this recurrence relation are of the form

an = �1 ⋅ 1
n + �2 ⋅ 2

n + �3 ⋅ 3
n
.

To find the constants �1, �2, and �3, use the initial conditions. This gives

a0 = 2 = �1 + �2 + �3,

a1 = 5 = �1 + �2 ⋅ 2 + �3 ⋅ 3,

a2 = 15 = �1 + �2 ⋅ 4 + �3 ⋅ 9.

When these three simultaneous equations are solved for �1, �2, and �3, we find that �1 = 1,
�2 = −1, and �3 = 2. Hence, the unique solution to this recurrence relation and the given initial
conditions is the sequence {an} with

an = 1 − 2
n + 2 ⋅ 3n. ◂

We now state the most general result about linear homogeneous recurrence relations with

constant coefficients, allowing the characteristic equation to have multiple roots. The key point

is that for each root r of the characteristic equation, the general solution has a summand of the

546 8 / Advanced Counting Techniques

form P(n)rn, where P(n) is a polynomial of degree m − 1, with m the multiplicity of this root.
We leave the proof of this result as Exercise 51.

THEOREM 4 Let c1, c2,… , ck be real numbers. Suppose that the characteristic equation

rk − c1r
k−1 −⋯ − ck = 0

has t distinct roots r1, r2,… , rt with multiplicities m1, m2,… , mt, respectively, so
that mi ≥ 1 for i = 1, 2,… , t and m1 + m2 +⋯ + mt = k. Then a sequence {an} is a solu-
tion of the recurrence relation

an = c1an−1 + c2an−2 +⋯ + ckan−k

if and only if

an = (�1,0 + �1,1n +⋯ + �1,m1−1
nm1−1)rn

1

+ (�2,0 + �2,1n +⋯ + �2,m2−1
nm2−1)rn

2

+⋯ + (�t,0 + �t,1n +⋯ + �t,mt−1
nmt−1)rn

t

for n = 0, 1, 2,… , where �i,j are constants for 1 ≤ i ≤ t and 0 ≤ j ≤ mi − 1.

Example 7 illustrates how Theorem 4 is used to find the general form of a solution of a
linear homogeneous recurrence relation when the characteristic equation has several repeated
roots.

EXAMPLE 7 Suppose that the roots of the characteristic equation of a linear homogeneous recurrence relation
are 2, 2, 2, 5, 5, and 9 (that is, there are three roots, the root 2 with multiplicity three, the root
5 with multiplicity two, and the root 9 with multiplicity one). What is the form of the general
solution?

Solution: By Theorem 4, the general form of the solution is

(�1,0 + �1,1n + �1,2n
2)2n + (�2,0 + �2,1n)5

n + �3,09
n
.

◂

We now illustrate the use of Theorem 4 to solve a linear homogeneous recurrence relation
with constant coefficients when the characteristic equation has a root of multiplicity three.

EXAMPLE 8 Find the solution to the recurrence relation

an = −3an−1 − 3an−2 − an−3

with initial conditions a0 = 1, a1 = −2, and a2 = −1.

Solution: The characteristic equation of this recurrence relation is

r3 + 3r2 + 3r + 1 = 0.

Because r3 + 3r2 + 3r + 1 = (r + 1)3, there is a single root r = −1 of multiplicity three of the
characteristic equation. By Theorem 4 the solutions of this recurrence relation are of the form

an = �1,0(−1)
n + �1,1n(−1)

n + �1,2n
2(−1)n.

8.2 Solving Linear Recurrence Relations 547

To find the constants �1,0, �1,1, and �1,2, use the initial conditions. This gives

a0 = 1 = �1,0,

a1 = −2 = −�1,0 − �1,1 − �1,2,

a2 = −1 = �1,0 + 2�1,1 + 4�1,2.

The simultaneous solution of these three equations is �1,0 = 1, �1,1 = 3, and �1,2 = −2.
Hence, the unique solution to this recurrence relation and the given initial conditions is the
sequence {an} with

an = (1 + 3n − 2n2)(−1)n. ◂

8.2.3 Linear Nonhomogeneous Recurrence Relations

with Constant Coefficients

We have seen how to solve linear homogeneous recurrence relations with constant coefficients.
Is there a relatively simple technique for solving a linear, but not homogeneous, recurrence
relation with constant coefficients, such as an = 3an−1 + 2n? We will see that the answer is yes
for certain families of such recurrence relations.

The recurrence relation an = 3an−1 + 2n is an example of a linear nonhomogeneous re-
currence relation with constant coefficients, that is, a recurrence relation of the form

an = c1an−1 + c2an−2 +⋯ + ckan−k + F(n),

where c1, c2,… , ck are real numbers and F(n) is a function not identically zero depending only
on n. The recurrence relation

an = c1an−1 + c2an−2 +⋯ + ckan−k

is called the associated homogeneous recurrence relation. It plays an important role in the
solution of the nonhomogeneous recurrence relation.

EXAMPLE 9 Each of the recurrence relations an = an−1 + 2n, an = an−1 + an−2 + n
2 + n + 1, an = 3an−1 +

n3n, and an = an−1 + an−2 + an−3 + n! is a linear nonhomogeneous recurrence relation with
constant coefficients. The associated linear homogeneous recurrence relations are an = an−1,
an = an−1 + an−2, an = 3an−1, and an = an−1 + an−2 + an−3, respectively. ◂

The key fact about linear nonhomogeneous recurrence relations with constant coefficients
is that every solution is the sum of a particular solution and a solution of the associated linear
homogeneous recurrence relation, as Theorem 5 shows.

THEOREM 5 If {a
(p)
n } is a particular solution of the nonhomogeneous linear recurrence relation with con-

stant coefficients

an = c1an−1 + c2an−2 +⋯ + ckan−k + F(n),

then every solution is of the form {a
(p)
n + a(h)

n
}, where {a(h)

n
} is a solution of the associated

homogeneous recurrence relation

an = c1an−1 + c2an−2 +⋯ + ckan−k.

548 8 / Advanced Counting Techniques

Proof: Because {a
(p)
n } is a particular solution of the nonhomogeneous recurrence relation, we

know that

a(p)
n

= c1a
(p)

n−1
+ c2a

(p)

n−2
+⋯ + cka

(p)

n−k
+ F(n).

Now suppose that {bn} is a second solution of the nonhomogeneous recurrence relation, so that

bn = c1bn−1 + c2bn−2 +⋯ + ckbn−k + F(n).

Subtracting the first of these two equations from the second shows that

bn − a
(p)
n

= c1(bn−1 − a
(p)

n−1
) + c2(bn−2 − a

(p)

n−2
) +⋯ + ck(bn−k − a

(p)

n−k
).

It follows that {bn − a
p
n} is a solution of the associated homogeneous linear recurrence,

say, {a(h)
n
}. Consequently, bn = a

(p)
n + a(h)

n
for all n.

By Theorem 5, we see that the key to solving nonhomogeneous recurrence relations with
constant coefficients is finding a particular solution. Then every solution is a sum of this solution
and a solution of the associated homogeneous recurrence relation. Although there is no general
method for finding such a solution that works for every function F(n), there are techniques that
work for certain types of functions F(n), such as polynomials and powers of constants. This is
illustrated in Examples 10 and 11.

EXAMPLE 10 Find all solutions of the recurrence relation an = 3an−1 + 2n. What is the solution with a1 = 3?

Solution: To solve this linear nonhomogeneous recurrence relation with constant coefficients,
we need to solve its associated linear homogeneous equation and to find a particular solution
for the given nonhomogeneous equation. The associated linear homogeneous equation is an =
3an−1. Its solutions are a

(h)
n

= �3n, where � is a constant.
We now find a particular solution. Because F(n) = 2n is a polynomial in n of degree one, a

reasonable trial solution is a linear function in n, say, pn = cn + d, where c and d are constants.
To determine whether there are any solutions of this form, suppose that pn = cn + d is such
a solution. Then the equation an = 3an−1 + 2n becomes cn + d = 3(c(n − 1) + d) + 2n. Sim-
plifying and combining like terms gives (2 + 2c)n+ (2d − 3c) = 0. It follows that cn + d is a
solution if and only if 2 + 2c = 0 and 2d − 3c = 0. This shows that cn + d is a solution if and

only if c = −1 and d = −3∕2. Consequently, a
(p)
n = −n − 3∕2 is a particular solution.

By Theorem 5 all solutions are of the form

an = a
(p)
n

+ a(h)
n

= −n −
3

2
+ � ⋅ 3n,

where � is a constant.
To find the solution with a1 = 3, let n = 1 in the formula we obtained for the general so-

lution. We find that 3 = −1 − 3∕2 + 3�, which implies that � = 11∕6. The solution we seek is
an = −n − 3∕2 + (11∕6)3n. ◂

EXAMPLE 11 Find all solutions of the recurrence relation

Extra

Examples

an = 5an−1 − 6an−2 + 7n.

Solution: This is a linear nonhomogeneous recurrence relation. The solutions of its associated
homogeneous recurrence relation

an = 5an−1 − 6an−2

8.2 Solving Linear Recurrence Relations 549

are a(h)
n

= �1 ⋅ 3
n + �2 ⋅ 2

n, where �1 and �2 are constants. Because F(n) = 7n, a reasonable trial

solution is a
(p)
n = C ⋅ 7n, where C is a constant. Substituting the terms of this sequence into

the recurrence relation implies that C ⋅ 7n = 5C ⋅ 7n−1 − 6C ⋅ 7n−2 + 7n. Factoring out 7n−2, this
equation becomes 49C = 35C − 6C + 49, which implies that 20C = 49, or that C = 49∕20.

Hence, a
(p)
n = (49∕20)7n is a particular solution. By Theorem 5, all solutions are of the form

an = �1 ⋅ 3
n + �2 ⋅ 2

n + (49∕20)7n. ◂

In Examples 10 and 11, we made an educated guess that there are solutions of a particular
form. In both cases wewere able to find particular solutions. This was not an accident.Whenever
F(n) is the product of a polynomial in n and the nth power of a constant, we know exactly what
form a particular solution has, as stated in Theorem 6. We leave the proof of Theorem 6 as
Exercise 52.

THEOREM 6 Suppose that {an} satisfies the linear nonhomogeneous recurrence relation

an = c1an−1 + c2an−2 +⋯ + ckan−k + F(n),

where c1, c2,… , ck are real numbers, and

F(n) = (btn
t + bt−1n

t−1 +⋯ + b1n + b0)s
n,

where b0, b1,… , bt and s are real numbers. When s is not a root of the characteristic equation
of the associated linear homogeneous recurrence relation, there is a particular solution of the
form

(ptn
t + pt−1n

t−1 +⋯ + p1n + p0)s
n
.

When s is a root of this characteristic equation and its multiplicity is m, there is a particular
solution of the form

nm(ptn
t + pt−1n

t−1 +⋯ + p1n + p0)s
n
.

Note that in the case when s is a root of multiplicity m of the characteristic equation of the
associated linear homogeneous recurrence relation, the factor nm ensures that the proposed par-
ticular solution will not already be a solution of the associated linear homogeneous recurrence
relation. We next provide Example 12 to illustrate the form of a particular solution provided by
Theorem 6.

EXAMPLE 12 What form does a particular solution of the linear nonhomogeneous recurrence rela-
tion an = 6an−1 − 9an−2 + F(n) have when F(n) = 3n, F(n) = n3n, F(n) = n22n, and F(n) =
(n2 + 1)3n?

Solution: The associated linear homogeneous recurrence relation is an = 6an−1 − 9an−2. Its
characteristic equation, r2 − 6r + 9 = (r − 3)2 = 0, has a single root, 3, of multiplicity two. To
apply Theorem 6, with F(n) of the form P(n)sn, where P(n) is a polynomial and s is a constant,
we need to ask whether s is a root of this characteristic equation.

Because s = 3 is a root with multiplicity m = 2 but s = 2 is not a root, Theorem 6 tells us
that a particular solution has the form p0n

23n if F(n) = 3n, the form n2(p1n + p0)3
n if F(n) =

550 8 / Advanced Counting Techniques

n3n, the form (p2n
2 + p1n + p0)2

n if F(n) = n22n, and the form n2(p2n
2 + p1n + p0)3

n if F(n) =
(n2 + 1)3n. ◂

Care must be taken when s = 1 when solving recurrence relations of the type covered by
Theorem 6. In particular, to apply this theorem with F(n) = btnt + bt−1nt−1 +⋯ + b1n + b0,
the parameter s takes the value s = 1 (even though the term 1n does not explicitly appear). By
the theorem, the form of the solution then depends on whether 1 is a root of the character-
istic equation of the associated linear homogeneous recurrence relation. This is illustrated in
Example 13, which shows how Theorem 6 can be used to find a formula for the sum of the first
n positive integers.

EXAMPLE 13 Let an be the sum of the first n positive integers, so that

an =

n∑

k=1

k.

Note that an satisfies the linear nonhomogeneous recurrence relation

an = an−1 + n.

(To obtain an, the sum of the first n positive integers, from an−1, the sum of the first n − 1 positive
integers, we add n.) Note that the initial condition is a1 = 1.

The associated linear homogeneous recurrence relation for an is

an = an−1.

The solutions of this homogeneous recurrence relation are given by a(h)
n

= c(1)n = c,
where c is a constant. To find all solutions of an = an−1 + n, we need find only a single par-
ticular solution. By Theorem 6, because F(n) = n = n ⋅ (1)n and s = 1 is a root of degree one of
the characteristic equation of the associated linear homogeneous recurrence relation, there is a
particular solution of the form n(p1n + p0) = p1n

2 + p0n.
Inserting this into the recurrence relation gives p1n

2 + p0n = p1(n − 1)2 + p0(n − 1) + n.
Simplifying, we see that n(2p1 − 1) + (p0 − p1) = 0, which means that 2p1 − 1 = 0 and p0 −
p1 = 0, so p0 = p1 = 1∕2. Hence,

a(p)
n

=
n2

2
+
n

2
=
n(n + 1)

2

is a particular solution. Hence, all solutions of the original recurrence relation an = an−1 + n

are given by an = a
(h)
n

+ a
(p)
n = c + n(n + 1)∕2. Because a1 = 1, we have 1 = a1 = c + 1 ⋅ 2∕2 =

c + 1, so c = 0. It follows that an = n(n + 1)∕2. (This is the same formula given in Table 2 in
Section 2.4 and derived previously.) ◂

Exercises

1. Determine which of these are linear homogeneous recur-
rence relations with constant coefficients. Also, find the
degree of those that are.

a) an = 3an−1 + 4an−2 + 5an−3
b) an = 2nan−1 + an−2 c) an = an−1 + an−4
d) an = an−1 + 2 e) an = a

2
n−1

+ an−2
f) an = an−2 g) an = an−1 + n

2. Determine which of these are linear homogeneous recur-
rence relations with constant coefficients. Also, find the
degree of those that are.

a) an = 3an−2 b) an = 3
c) an = a

2
n−1

d) an = an−1 + 2an−3
e) an = an−1∕n
f) an = an−1 + an−2 + n + 3
g) an = 4an−2 + 5an−4 + 9an−7

8.2 Solving Linear Recurrence Relations 551

3. Solve these recurrence relations together with the initial
conditions given.

a) an = 2an−1 for n ≥ 1, a0 = 3
b) an = an−1 for n ≥ 1, a0 = 2
c) an = 5an−1 − 6an−2 for n ≥ 2, a0 = 1, a1 = 0
d) an = 4an−1 − 4an−2 for n ≥ 2, a0 = 6, a1 = 8
e) an = −4an−1 − 4an−2 for n ≥ 2, a0 = 0, a1 = 1
f) an = 4an−2 for n ≥ 2, a0 = 0, a1 = 4
g) an = an−2 ∕4 for n ≥ 2, a0 = 1, a1 = 0

4. Solve these recurrence relations together with the initial
conditions given.

a) an = an−1 + 6an−2 for n ≥ 2, a0 = 3, a1 = 6
b) an = 7an−1 − 10an−2 for n ≥ 2, a0 = 2, a1 = 1
c) an = 6an−1 − 8an−2 for n ≥ 2, a0 = 4, a1 = 10
d) an = 2an−1 − an−2 for n ≥ 2, a0 = 4, a1 = 1
e) an = an−2 for n ≥ 2, a0 = 5, a1 = −1
f) an = −6an−1 − 9an−2 for n ≥ 2, a0 = 3, a1 = −3
g) an+2 = −4an+1 + 5an for n ≥ 0, a0 = 2, a1 = 8

5. Howmany different messages can be transmitted in nmi-
croseconds using the two signals described in Exercise 19
in Section 8.1?

6. Howmany different messages can be transmitted in nmi-
croseconds using three different signals if one signal re-
quires 1 microsecond for transmittal, the other two sig-
nals require 2 microseconds each for transmittal, and a
signal in a message is followed immediately by the next
signal?

7. In how many ways can a 2 × n rectangular checkerboard
be tiled using 1 × 2 and 2 × 2 pieces?

8. A model for the number of lobsters caught per year is
based on the assumption that the number of lobsters
caught in a year is the average of the number caught in
the two previous years.

a) Find a recurrence relation for {Ln}, where Ln is the
number of lobsters caught in year n, under the as-
sumption for this model.

b) Find Ln if 100,000 lobsters were caught in year 1 and
300,000 were caught in year 2.

9. A deposit of $100,000 is made to an investment fund at
the beginning of a year. On the last day of each year two
dividends are awarded. The first dividend is 20% of the
amount in the account during that year. The second divi-
dend is 45% of the amount in the account in the previous
year.

a) Find a recurrence relation for {Pn}, where Pn is the
amount in the account at the end of n years if no
money is ever withdrawn.

b) How much is in the account after n years if no money
has been withdrawn?

∗10. Prove Theorem 2.

11. The Lucas numbers satisfy the recurrence relation

Links Ln = Ln−1 + Ln−2,

and the initial conditions L0 = 2 and L1 = 1.

a) Show that Ln = fn−1 + fn+1 for n = 2, 3,… , where fn
is the nth Fibonacci number.

b) Find an explicit formula for the Lucas numbers.

12. Find the solution to an = 2an−1 + an−2 − 2an−3
for n = 3, 4, 5,… , with a0 = 3, a1 = 6, and a2 = 0.

13. Find the solution to an = 7an−2 + 6an−3 with a0 = 9,
a1 = 10, and a2 = 32.

14. Find the solution to an = 5an−2 − 4an−4 with a0 = 3,
a1 = 2, a2 = 6, and a3 = 8.

15. Find the solution to an = 2an−1 + 5an−2 − 6an−3 with
a0 = 7, a1 = −4, and a2 = 8.

∗16. Prove Theorem 3.

17. Prove this identity relating the Fibonacci numbers and the
binomial coefficients:

fn+1 = C(n, 0) + C(n − 1, 1) +⋯ + C(n − k, k),

where n is a positive integer and k = ⌊n∕2⌋. [Hint: Let
an = C(n, 0) + C(n − 1, 1) +⋯+ C(n − k, k). Show that
the sequence {an} satisfies the same recurrence relation
and initial conditions satisfied by the sequence of Fi-
bonacci numbers.]

18. Solve the recurrence relation an = 6an−1 − 12an−2 +
8an−3 with a0 = −5, a1 = 4, and a2 = 88.

19. Solve the recurrence relation an = −3an−1 − 3an−2 −
an−3 with a0 = 5, a1 = −9, and a2 = 15.

20. Find the general form of the solutions of the recurrence
relation an = 8an−2 − 16an−4.

21. What is the general form of the solutions of a linear ho-
mogeneous recurrence relation if its characteristic equa-
tion has roots 1, 1, 1, 1,−2,−2,−2, 3, 3,−4?

22. What is the general form of the solutions of a linear ho-
mogeneous recurrence relation if its characteristic equa-
tion has the roots −1,−1,−1, 2, 2, 5, 5, 7?

23. Consider the nonhomogeneous linear recurrence relation
an = 3an−1 + 2n.

a) Show that an = −2n+1 is a solution of this recurrence
relation.

b) Use Theorem 5 to find all solutions of this recurrence
relation.

c) Find the solution with a0 = 1.

24. Consider the nonhomogeneous linear recurrence relation
an = 2an−1 + 2n.

a) Show that an = n2
n is a solution of this recurrence

relation.

b) Use Theorem 5 to find all solutions of this recurrence
relation.

c) Find the solution with a0 = 2.

25. a) Determine values of the constants A and B such that
an = An + B is a solution of recurrence relation an =
2an−1 + n + 5.

b) Use Theorem 5 to find all solutions of this recurrence
relation.

c) Find the solution of this recurrence relation with
a0 = 4.

552 8 / Advanced Counting Techniques

26. What is the general form of the particular solution
guaranteed to exist by Theorem 6 of the linear non-
homogeneous recurrence relation an = 6an−1 − 12an−2 +
8an−3 + F(n) if

a) F(n) = n2? b) F(n) = 2n?

c) F(n) = n2n? d) F(n) = (−2)n?

e) F(n) = n22n? f) F(n) = n3(−2)n?

g) F(n) = 3?

27. What is the general form of the particular solution guar-
anteed to exist by Theorem 6 of the linear nonhomoge-
neous recurrence relation an = 8an−2 − 16an−4 + F(n) if

a) F(n) = n3? b) F(n) = (−2)n?

c) F(n) = n2n? d) F(n) = n24n?

e) F(n) = (n2 − 2)(−2)n? f) F(n) = n42n?

g) F(n) = 2?

28. a) Find all solutions of the recurrence relation
an = 2an−1 + 2n2.

b) Find the solution of the recurrence relation in part (a)
with initial condition a1 = 4.

29. a) Find all solutions of the recurrence relation
an = 2an−1 + 3n.

b) Find the solution of the recurrence relation in part (a)
with initial condition a1 = 5.

30. a) Find all solutions of the recurrence relation an =
−5an−1 − 6an−2 + 42 ⋅ 4n.

b) Find the solution of this recurrence relation with a1 =
56 and a2 = 278.

31. Find all solutions of the recurrence relation an =
5an−1 − 6an−2 + 2n + 3n. [Hint: Look for a particular so-
lution of the form qn2n + p1n + p2, where q, p1, and p2
are constants.]

32. Find the solution of the recurrence relation an =
2an−1 + 3 ⋅ 2n.

33. Find all solutions of the recurrence relation an =
4an−1 − 4an−2 + (n + 1)2n.

34. Find all solutions of the recurrence relation an =
7an−1 − 16an−2 + 12an−3 + n4

n with a0 = −2,
a1 = 0, and a2 = 5.

35. Find the solution of the recurrence relation an =
4an−1 − 3an−2 + 2n + n + 3 with a0 = 1 and a1 = 4.

36. Let an be the sum of the first n perfect squares, that
is, an =

∑n

k= 1
k2. Show that the sequence {an} sat-

isfies the linear nonhomogeneous recurrence relation
an = an−1 + n

2 and the initial condition a1 = 1. Use The-
orem 6 to determine a formula for an by solving this re-
currence relation.

37. Let an be the sum of the first n triangular numbers, that
is, an =

∑n

k= 1
tk, where tk = k(k + 1)∕2. Show that {an}

satisfies the linear nonhomogeneous recurrence relation
an = an−1 + n(n + 1)∕2 and the initial condition a1 = 1.
Use Theorem 6 to determine a formula for an by solving
this recurrence relation.

38. a) Find the characteristic roots of the linear ho-
mogeneous recurrence relation an = 2an−1 − 2an−2.
[Note: These are complex numbers.]

b) Find the solution of the recurrence relation in part (a)
with a0 = 1 and a1 = 2.

∗39. a) Find the characteristic roots of the linear homoge-
neous recurrence relation an = an−4. [Note: These in-
clude complex numbers.]

b) Find the solution of the recurrence relation in part (a)
with a0 = 1, a1 = 0, a2 = −1, and a3 = 1.

∗40. Solve the simultaneous recurrence relations

an = 3an−1 + 2bn−1

bn = an−1 + 2bn−1

with a0 = 1 and b0 = 2.
∗41. a) Use the formula found in Example 4 for fn, the nth

Fibonacci number, to show that fn is the integer
closest to

1√
5

(
1 +

√
5

2

)n
.

b) Determine for which n fn is greater than

1√
5

(
1 +

√
5

2

)n

and for which n fn is less than

1√
5

(
1 +

√
5

2

)n
.

42. Show that if an = an−1 + an−2, a0 = s and a1 = t,
where s and t are constants, then an = sfn−1 + tfn for all
positive integers n.

43. Express the solution of the linear nonhomogenous re-
currence relation an = an−1 + an−2 + 1 for n ≥ 2 where
a0 = 0 and a1 = 1 in terms of the Fibonacci numbers.
[Hint: Let bn = an + 1 and apply Exercise 42 to the se-
quence bn.]

∗44. (Linear algebra required) Let An be the n × n matrix
with 2s on its main diagonal, 1s in all positions next to a
diagonal element, and 0s everywhere else. Find a recur-
rence relation for dn, the determinant of An. Solve this
recurrence relation to find a formula for dn.

45. Suppose that each pair of a genetically engineered species
of rabbits left on an island produces two new pairs of rab-
bits at the age of 1 month and six new pairs of rabbits at
the age of 2 months and every month afterward. None of
the rabbits ever die or leave the island.

a) Find a recurrence relation for the number of pairs of
rabbits on the island nmonths after one newborn pair
is left on the island.

b) By solving the recurrence relation in (a) determine
the number of pairs of rabbits on the island n months
after one pair is left on the island.

46. Suppose that there are two goats on an island initially.
The number of goats on the island doubles every year by
natural reproduction, and some goats are either added or
removed each year.

8.3 Divide-and-Conquer Algorithms and Recurrence Relations 553

a) Construct a recurrence relation for the number of
goats on the island at the start of the nth year, assum-
ing that during each year an extra 100 goats are put
on the island.

b) Solve the recurrence relation from part (a) to find the
number of goats on the island at the start of the nth
year.

c) Construct a recurrence relation for the number of
goats on the island at the start of the nth year, assum-
ing that n goats are removed during the nth year for
each n ≥ 3.

d) Solve the recurrence relation in part (c) for the num-
ber of goats on the island at the start of the nth year.

47. A new employee at an exciting new software company
starts with a salary of $50,000 and is promised that at the
end of each year her salary will be double her salary of
the previous year, with an extra increment of $10,000 for
each year she has been with the company.

a) Construct a recurrence relation for her salary for her
nth year of employment.

b) Solve this recurrence relation to find her salary for her
nth year of employment.

Some linear recurrence relations that do not have constant co-
efficients can be systematically solved. This is the case for re-
currence relations of the form f (n)an = g(n)an−1 + h(n). Ex-
ercises 48–50 illustrate this.

∗48. a) Show that the recurrence relation

f (n)an = g(n)an−1 + h(n),

for n ≥ 1, and with a0 = C, can be reduced to a recur-
rence relation of the form

bn = bn−1 + Q(n)h(n),

where bn = g(n + 1)Q(n + 1)an, with

Q(n) = (f (1)f (2)⋯ f (n − 1))∕(g(1)g(2)⋯ g(n)).

b) Use part (a) to solve the original recurrence relation
to obtain

an =
C +

∑n

i= 1
Q(i)h(i)

g(n + 1)Q(n + 1)
.

∗49. Use Exercise 48 to solve the recurrence relation
(n + 1)an = (n + 3)an−1 + n, for n ≥ 1, with a0 = 1.

50. It can be shown that Cn, the average number of com-
parisons made by the quick sort algorithm (described in
preamble to Exercise 50 in Section 5.4), when sorting n
elements in random order, satisfies the recurrence rela-
tion

Cn = n + 1 +
2

n

n−1∑

k= 0

Ck

for n = 1, 2,… , with initial condition C0 = 0.

a) Show that {Cn} also satisfies the recurrence relation
nCn = (n + 1)Cn−1 + 2n for n = 1, 2,… .

b) Use Exercise 48 to solve the recurrence relation in
part (a) to find an explicit formula for Cn.

∗∗51. Prove Theorem 4.
∗∗52. Prove Theorem 6.

53. Solve the recurrence relation T(n) = nT2(n∕2) with ini-
tial condition T(1) = 6 when n = 2k for some integer k.
[Hint: Let n = 2k and then make the substitution ak =
log T(2k) to obtain a linear nonhomogeneous recurrence
relation.]

8.3 Divide-and-Conquer Algorithms and Recurrence Relations

8.3.1 Introduction

Many recursive algorithms take a problem with a given input and divide it into one or more

Links smaller problems. This reduction is successively applied until the solutions of the smaller prob-
lems can be found quickly. For instance, we perform a binary search by reducing the search for
an element in a list to the search for this element in a list half as long. We successively apply
this reduction until one element is left. When we sort a list of integers using the merge sort, we
split the list into two halves of equal size and sort each half separately. We then merge the two
sorted halves. Another example of this type of recursive algorithm is a procedure for multiplying
integers that reduces the problem of the multiplication of two integers to three multiplications
of pairs of integers with half as many bits. This reduction is successively applied until integers
with one bit are obtained. There procedures follow an important algorithmic paradigm known

“Divide et impera”

(translation: “Divide

and conquer”) —Julius

Caesar

as divide-and-conquer, and are called divide-and-conquer algorithms, because they divide
a problem into one or more instances of the same problem of smaller size and they conquer
the problem by using the solutions of the smaller problems to find a solution of the original
problem, perhaps with some additional work.

In this section we will show how recurrence relations can be used to analyze the compu-
tational complexity of divide-and-conquer algorithms. We will use these recurrence relations

388 5 / Induction and Recursion

8 2 4 6 9 7 10 1 5 3

8 2 4 6 9 7 10 1 5 3

8 2 4 6 9

8 2 4

8 2

6

7 10 1 5 3

7 10 1

7 10

5 3

1 2 3 4 5 6 7 8 9 10

2 4 6 8 9 1 3 5 7 10

2 4 8 6 9

4

8 2

6

1 7 10 3 5

7 10 1

7 10

5 32 8 9

9

FIGURE 2 The merge sort of 8, 2, 4, 6, 9, 7, 10, 1, 5, 3.

5.4.4 The Merge Sort

Wenow describe a recursive sorting algorithm called themerge sort algorithm.Wewill demon-
Links

strate how the merge sort algorithm works with an example before describing it in generality.

EXAMPLE 9 Use the merge sort to put the terms of the list 8, 2, 4, 6, 9, 7, 10, 1, 5, 3 in increasing order.

Solution: Amerge sort begins by splitting the list into individual elements by successively split-

ting lists in two. The progression of sublists for this example is represented with the balanced

binary tree of height 4 shown in the upper half of Figure 2.

Sorting is done by successively merging pairs of lists. At the first stage, pairs of individual

elements are merged into lists of length two in increasing order. Then successive merges of

pairs of lists are performed until the entire list is put into increasing order. The succession of

merged lists in increasing order is represented by the balanced binary tree of height 4 shown in

the lower half of Figure 2 (note that this tree is displayed “upside down”). ◂

In general, a merge sort proceeds by iteratively splitting lists into two sublists of equal

length (or where one sublist has one more element than the other) until each sublist contains one

element. This succession of sublists can be represented by a balanced binary tree. The procedure

continues by successively merging pairs of lists, where both lists are in increasing order, into a

larger list with elements in increasing order, until the original list is put into increasing order.

The succession of merged lists can be represented by a balanced binary tree.
Demo

We can also describe the merge sort recursively. To do a merge sort, we split a list into

two sublists of equal, or approximately equal, size, sorting each sublist using the merge sort

5.4 Recursive Algorithms 389

algorithm, and then merging the two lists. The recursive version of the merge sort is given in

Algorithm 9. This algorithm uses the subroutine merge, which is described in Algorithm 10.

ALGORITHM 9 A Recursive Merge Sort.

procedure mergesort(L = a1,… , an)

if n > 1 then

m := ⌊n∕2⌋
L1 := a1, a2,… , am

L2 := am+1, am+2,… , an

L := merge(mergesort(L1), mergesort(L2))

{L is now sorted into elements in nondecreasing order}

An efficient algorithm for merging two ordered lists into a larger ordered list is needed to

implement the merge sort. We will now describe such a procedure.

EXAMPLE 10 Merge the two lists 2, 3, 5, 6 and 1, 4.

Solution: Table 1 illustrates the steps we use. First, compare the smallest elements in the two

lists, 2 and 1, respectively. Because 1 is the smaller, put it at the beginning of the merged list

and remove it from the second list. At this stage, the first list is 2, 3, 5, 6, the second is 4, and

the combined list is 1.

Next, compare 2 and 4, the smallest elements of the two lists. Because 2 is the smaller, add

it to the combined list and remove it from the first list. At this stage the first list is 3, 5, 6, the

second is 4, and the combined list is 1, 2.

Continue by comparing 3 and 4, the smallest elements of their respective lists. Because 3

is the smaller of these two elements, add it to the combined list and remove it from the first list.

At this stage the first list is 5, 6, and the second is 4. The combined list is 1, 2, 3.

Then compare 5 and 4, the smallest elements in the two lists. Because 4 is the smaller of

these two elements, add it to the combined list and remove it from the second list. At this stage

the first list is 5, 6, the second list is empty, and the combined list is 1, 2, 3, 4.

Finally, because the second list is empty, all elements of the first list can be appended to

the end of the combined list in the order they occur in the first list. This produces the ordered

list 1, 2, 3, 4, 5, 6. ◂

We will now consider the general problem of merging two ordered lists L1 and L2 into an

ordered list L. We will describe an algorithm for solving this problem. Start with an empty

list L. Compare the smallest elements of the two lists. Put the smaller of these two elements

TABLE 1 Merging the Two Sorted Lists 2, 3, 5, 6 and 1, 4.

First List Second List Merged List Comparison

2 3 5 6 1 4 1 < 2

2 3 5 6 4 1 2 < 4

3 5 6 4 1 2 3 < 4

5 6 4 1 2 3 4 < 5

5 6 1 2 3 4

1 2 3 4 5 6

390 5 / Induction and Recursion

at the right end of L, and remove it from the list it was in. Next, if one of L1 and L2 is empty,

append the other (nonempty) list to L, which completes the merging. If neither L1 nor L2 is

empty, repeat this process. Algorithm 10 gives a pseudocode description of this procedure.

We will need estimates for the number of comparisons used to merge two ordered lists in

the analysis of the merge sort. We can easily obtain such an estimate for Algorithm 10. Each

time a comparison of an element from L1 and an element from L2 is made, an additional element

is added to the merged list L. However, when either L1 or L2 is empty, no more comparisons

are needed. Hence, Algorithm 10 is least efficient when m + n − 2 comparisons are carried out,
where m and n are the number of elements in L1 and L2, respectively, leaving one element in

each of L1 and L2. The next comparison will be the last one needed, because it will make one

of these lists empty. Hence, Algorithm 10 uses no more than m + n − 1 comparisons. Lemma 1
summarizes this estimate.

ALGORITHM 10 Merging Two Lists.

procedure merge(L1, L2 : sorted lists)

L := empty list

while L1 and L2 are both nonempty

remove smaller of first elements of L1 and L2 from its list; put it at the right end of L

if this removal makes one list empty then remove all elements from the other list and

append them to L

return L{L is the merged list with elements in increasing order}

LEMMA 1 Two sorted lists with m elements and n elements can be merged into a sorted list using no

more than m + n − 1 comparisons.

Sometimes two sorted lists of length m and n can be merged using far fewer than m +
n − 1 comparisons. For instance, when m = 1, a binary search procedure can be applied to put
the one element in the first list into the second list. This requires only ⌈log n⌉ comparisons,
which is much smaller than m + n − 1 = n, for m = 1. On the other hand, for some values of m

and n, Lemma 1 gives the best possible bound. That is, there are lists with m and n elements

that cannot be merged using fewer than m + n − 1 comparisons. (See Exercise 47.)
We can now analyze the complexity of the merge sort. Instead of studying the general

problem, we will assume that n, the number of elements in the list, is a power of 2, say 2m. This

will make the analysis less complicated, but when this is not the case, various modifications can

be applied that will yield the same estimate.

At the first stage of the splitting procedure, the list is split into two sublists, of 2m−1 elements

each, at level 1 of the tree generated by the splitting. This process continues, splitting the two

sublists with 2m−1 elements into four sublists of 2m−2 elements each at level 2, and so on. In

general, there are 2k−1 lists at level k − 1, each with 2m−k+1 elements. These lists at level k − 1
are split into 2k lists at level k, each with 2m−k elements. At the end of this process, we have 2m

lists each with one element at level m.

We start merging by combining pairs of the 2m lists of one element into 2m−1 lists, at level

m − 1, each with two elements. To do this, 2m−1 pairs of lists with one element each are merged.

The merger of each pair requires exactly one comparison.

The procedure continues, so that at level k (k = m, m − 1, m − 2,… , 3, 2, 1), 2k lists each

with 2m−k elements are merged into 2k−1 lists, each with 2m−k+1 elements, at level k − 1. To do
this a total of 2k−1 mergers of two lists, each with 2m−k elements, are needed. But, by Lemma 1,

5.4 Recursive Algorithms 391

each of these mergers can be carried out using at most 2m−k + 2m−k − 1 = 2m−k+1 − 1 compar-
isons. Hence, going from level k to k − 1 can be accomplished using at most 2k−1(2m−k+1 − 1)
comparisons.

Summing all these estimates shows that the number of comparisons required for the merge

sort is at most

m∑

k= 1

2k−1(2m−k+1 − 1) =

m∑

k= 1

2m −

m∑

k= 1

2k−1 = m2m − (2m − 1) = n log n − n + 1,

becausem = log n and n = 2m. (We evaluated
∑m

k= 1
2m by noting that it is the sum ofm identical

terms, each equal to 2m. We evaluated
∑m

k= 1
2k−1 using the formula for the sum of the terms of

a geometric progression from Theorem 1 of Section 2.4.)

Theorem 1 summarizes what we have discovered about the worst-case complexity of the

merge sort algorithm.

THEOREM 1 The number of comparisons needed to merge sort a list with n elements is O(n log n).

In Chapter 11 we will show that the fastest comparison-based sorting algorithm have

O(n log n) time complexity. (A comparison-based sorting algorithm has the comparison of two

elements as its basic operation.) Theorem 1 tells us that the merge sort achieves this best pos-

sible big-O estimate for the complexity of a sorting algorithm. We describe another efficient

algorithm, the quick sort, in the preamble to Exercise 50.

Exercises

1. Trace Algorithm 1 when it is given n = 5 as input. That
is, show all steps used by Algorithm 1 to find 5!, as is
done in Example 1 to find 4!.

2. Trace Algorithm 1 when it is given n = 6 as input. That
is, show all steps used by Algorithm 1 to find 6!, as is
done in Example 1 to find 4!.

3. Trace Algorithm 3 when it finds gcd(8, 13). That is, show
all the steps used by Algorithm 3 to find gcd(8, 13).

4. Trace Algorithm 3 when it finds gcd(12, 17). That
is, show all the steps used by Algorithm 3 to find

gcd(12, 17).

5. Trace Algorithm 4 when it is given m = 5, n = 11, and
b = 3 as input. That is, show all the steps Algorithm 4
uses to find 311mod 5.

6. Trace Algorithm 4 when it is given m = 7, n = 10, and
b = 2 as input. That is, show all the steps Algorithm 4
uses to find 210mod 7.

7. Give a recursive algorithm for computing nx whenever n

is a positive integer and x is an integer, using just addi-

tion.

8. Give a recursive algorithm for finding the sum of the

first n positive integers.

9. Give a recursive algorithm for finding the sum of the

first n odd positive integers.

10. Give a recursive algorithm for finding the maximum of a

finite set of integers, making use of the fact that the max-

imum of n integers is the larger of the last integer in the

list and the maximum of the first n − 1 integers in the list.

11. Give a recursive algorithm for finding the minimum of a

finite set of integers, making use of the fact that the min-

imum of n integers is the smaller of the last integer in the

list and the minimum of the first n − 1 integers in the list.

12. Devise a recursive algorithm for finding xn mod mwhen-

ever n, x, andm are positive integers based on the fact that

xn mod m = (xn−1 mod m ⋅ x mod m) mod m.

13. Give a recursive algorithm for finding n!mod m when-

ever n and m are positive integers.

14. Give a recursive algorithm for finding amode of a list of

integers. (A mode is an element in the list that occurs at

least as often as every other element.)

15. Devise a recursive algorithm for computing the greatest

common divisor of two nonnegative integers a and bwith

a < b using the fact that gcd(a, b) = gcd(a, b − a).

16. Prove that the recursive algorithm for finding the sum of

the first n positive integers you found in Exercise 8 is

correct.

8.3 Divide-and-Conquer Algorithms and Recurrence Relations 553

a) Construct a recurrence relation for the number of
goats on the island at the start of the nth year, assum-
ing that during each year an extra 100 goats are put
on the island.

b) Solve the recurrence relation from part (a) to find the
number of goats on the island at the start of the nth
year.

c) Construct a recurrence relation for the number of
goats on the island at the start of the nth year, assum-
ing that n goats are removed during the nth year for
each n ≥ 3.

d) Solve the recurrence relation in part (c) for the num-
ber of goats on the island at the start of the nth year.

47. A new employee at an exciting new software company
starts with a salary of $50,000 and is promised that at the
end of each year her salary will be double her salary of
the previous year, with an extra increment of $10,000 for
each year she has been with the company.

a) Construct a recurrence relation for her salary for her
nth year of employment.

b) Solve this recurrence relation to find her salary for her
nth year of employment.

Some linear recurrence relations that do not have constant co-
efficients can be systematically solved. This is the case for re-
currence relations of the form f (n)an = g(n)an−1 + h(n). Ex-
ercises 48–50 illustrate this.

∗48. a) Show that the recurrence relation

f (n)an = g(n)an−1 + h(n),

for n ≥ 1, and with a0 = C, can be reduced to a recur-
rence relation of the form

bn = bn−1 + Q(n)h(n),

where bn = g(n + 1)Q(n + 1)an, with

Q(n) = (f (1)f (2)⋯ f (n − 1))∕(g(1)g(2)⋯ g(n)).

b) Use part (a) to solve the original recurrence relation
to obtain

an =
C +

∑n

i= 1
Q(i)h(i)

g(n + 1)Q(n + 1)
.

∗49. Use Exercise 48 to solve the recurrence relation
(n + 1)an = (n + 3)an−1 + n, for n ≥ 1, with a0 = 1.

50. It can be shown that Cn, the average number of com-
parisons made by the quick sort algorithm (described in
preamble to Exercise 50 in Section 5.4), when sorting n
elements in random order, satisfies the recurrence rela-
tion

Cn = n + 1 +
2

n

n−1∑
k= 0

Ck

for n = 1, 2,… , with initial condition C0 = 0.

a) Show that {Cn} also satisfies the recurrence relation
nCn = (n + 1)Cn−1 + 2n for n = 1, 2,… .

b) Use Exercise 48 to solve the recurrence relation in
part (a) to find an explicit formula for Cn.

∗∗51. Prove Theorem 4.
∗∗52. Prove Theorem 6.

53. Solve the recurrence relation T(n) = nT2(n∕2) with ini-
tial condition T(1) = 6 when n = 2k for some integer k.
[Hint: Let n = 2k and then make the substitution ak =
log T(2k) to obtain a linear nonhomogeneous recurrence
relation.]

8.3 Divide-and-Conquer Algorithms and Recurrence Relations

8.3.1 Introduction

Many recursive algorithms take a problem with a given input and divide it into one or more

Links smaller problems. This reduction is successively applied until the solutions of the smaller prob-
lems can be found quickly. For instance, we perform a binary search by reducing the search for
an element in a list to the search for this element in a list half as long. We successively apply
this reduction until one element is left. When we sort a list of integers using the merge sort, we
split the list into two halves of equal size and sort each half separately. We then merge the two
sorted halves. Another example of this type of recursive algorithm is a procedure for multiplying
integers that reduces the problem of the multiplication of two integers to three multiplications
of pairs of integers with half as many bits. This reduction is successively applied until integers
with one bit are obtained. There procedures follow an important algorithmic paradigm known

“Divide et impera”

(translation: “Divide

and conquer”) —Julius

Caesar

as divide-and-conquer, and are called divide-and-conquer algorithms, because they divide
a problem into one or more instances of the same problem of smaller size and they conquer
the problem by using the solutions of the smaller problems to find a solution of the original
problem, perhaps with some additional work.

In this section we will show how recurrence relations can be used to analyze the compu-
tational complexity of divide-and-conquer algorithms. We will use these recurrence relations

554 8 / Advanced Counting Techniques

to estimate the number of operations used by many different divide-and-conquer algorithms,

including several that we introduce in this section.

8.3.2 Divide-and-Conquer Recurrence Relations

Suppose that a recursive algorithm divides a problem of size n into a subproblems, where each

subproblem is of size n∕b (for simplicity, assume that n is a multiple of b; in reality, the smaller
problems are often of size equal to the nearest integers either less than or equal to, or greater

than or equal to, n∕b). Also, suppose that a total of g(n) extra operations are required in the
conquer step of the algorithm to combine the solutions of the subproblems into a solution of

the original problem. Then, if f (n) represents the number of operations required to solve the

problem of size n, it follows that f satisfies the recurrence relation

f (n) = af (n∕b) + g(n).

This is called a divide-and-conquer recurrence relation.

We will first set up the divide-and-conquer recurrence relations that can be used to study

the complexity of some important algorithms. Then we will show how to use these divide-and-

conquer recurrence relations to estimate the complexity of these algorithms.

EXAMPLE 1 Binary Search We introduced a binary search algorithm in Section 3.1. This binary search

Extra

Examples

algorithm reduces the search for an element in a search sequence of size n to the binary search

for this element in a search sequence of size n∕2, when n is even. (Hence, the problem of size n

has been reduced to one problem of size n∕2.) Two comparisons are needed to implement this
reduction (one to determine which half of the list to use and the other to determine whether any

terms of the list remain). Hence, if f (n) is the number of comparisons required to search for an

element in a search sequence of size n, then

f (n) = f (n∕2) + 2

when n is even. ◂

EXAMPLE 2 Finding the Maximum and Minimum of a Sequence Consider the following algorithm for

locating the maximum and minimum elements of a sequence a1, a2,… , an. If n = 1, then a1 is

the maximum and the minimum. If n > 1, split the sequence into two sequences, either where

both have the same number of elements or where one of the sequences has one more element

than the other. The problem is reduced to finding the maximum and minimum of each of the

two smaller sequences. The solution to the original problem results from the comparison of the

separate maxima and minima of the two smaller sequences to obtain the overall maximum and

minimum.

Let f (n) be the total number of comparisons needed to find the maximum and minimum

elements of the sequence with n elements. We have shown that a problem of size n can be

reduced into two problems of size n∕2, when n is even, using two comparisons, one to compare
the maxima of the two sequences and the other to compare the minima of the two sequences.

This gives the recurrence relation

f (n) = 2f (n∕2) + 2

when n is even. ◂

EXAMPLE 3 Merge Sort The merge sort algorithm (introduced in Section 5.4) splits a list to be sorted

with n items, where n is even, into two lists with n∕2 elements each, and uses fewer than n

8.3 Divide-and-Conquer Algorithms and Recurrence Relations 555

comparisons to merge the two sorted lists of n∕2 items each into one sorted list. Consequently,
the number of comparisons used by the merge sort to sort a list of n elements is less thanM(n),

where the function M(n) satisfies the divide-and-conquer recurrence relation

M(n) = 2M(n∕2) + n. ◂

EXAMPLE 4 Fast Multiplication of Integers Surprisingly, there are more efficient algorithms than the
conventional algorithm (described in Section 4.2) for multiplying integers. One of these algo-
rithms, which uses a divide-and-conquer technique, will be described here. This fast multipli-
cation algorithm proceeds by splitting each of two 2n-bit integers into two blocks, each with n
bits. Then, the original multiplication is reduced from the multiplication of two 2n-bit integers
to three multiplications of n-bit integers, plus shifts and additions.

Links

Suppose that a and b are integers with binary expansions of length 2n (add initial bits of
zero in these expansions if necessary to make them the same length). Let

a = (a2n−1a2n−2⋯ a1a0)2 and b = (b2n−1b2n−2⋯ b1b0)2.

Let

a = 2nA1 + A0, b = 2nB1 + B0,

where

A1 = (a2n−1⋯ an+1an)2, A0 = (an−1⋯ a1a0)2,

B1 = (b2n−1⋯ bn+1bn)2, B0 = (bn−1⋯ b1b0)2.

The algorithm for fast multiplication of integers is based on the fact that ab can be
rewritten as

ab = (22n + 2n)A1B1 + 2n(A1 − A0)(B0 − B1) + (2n + 1)A0B0.

The important fact about this identity is that it shows that the multiplication of two 2n-bit in-
tegers can be carried out using three multiplications of n-bit integers, together with additions,
subtractions, and shifts. This shows that if f (n) is the total number of bit operations needed to
multiply two n-bit integers, then

f (2n) = 3f (n) + Cn.

The reasoning behind this equation is as follows. The three multiplications of n-bit integers
are carried out using 3f (n)-bit operations. Each of the additions, subtractions, and shifts uses a
constant multiple of n-bit operations, and Cn represents the total number of bit operations used
by these operations. ◂

EXAMPLE 5 Fast Matrix Multiplication In Example 7 of Section 3.3 we showed that multiplying two n ×

Links

n matrices using the definition of matrix multiplication required n3 multiplications and n2(n −
1) additions. Consequently, computing the product of two n × n matrices in this way requires
O(n3) operations (multiplications and additions). Surprisingly, there are more efficient divide-
and-conquer algorithms for multiplying two n × n matrices. Such an algorithm, invented by
Volker Strassen in 1969, reduces the multiplication of two n × n matrices, when n is even, to
seven multiplications of two (n∕2) × (n∕2) matrices and 15 additions of (n∕2) × (n∕2) matrices.

556 8 / Advanced Counting Techniques

(See [CoLeRiSt09] for the details of this algorithm.) Hence, if f (n) is the number of operations

(multiplications and additions) used, it follows that

f (n) = 7f (n∕2) + 15n2∕4

when n is even. ◂

As Examples 1–5 show, recurrence relations of the form f (n) = af (n∕b) + g(n) arise in

many different situations. It is possible to derive estimates of the size of functions that satisfy

such recurrence relations. Suppose that f satisfies this recurrence relationwhenever n is divisible

by b. Let n = bk, where k is a positive integer. Then

f (n) = af (n∕b) + g(n)

= a2f (n∕b2) + ag(n∕b) + g(n)

= a3f (n∕b3) + a2g(n∕b2) + ag(n∕b) + g(n)

⋮

= akf (n∕bk) +

k−1∑
j= 0

ajg(n∕bj).

Because n∕bk = 1, it follows that

f (n) = akf (1) +

k−1∑
j= 0

ajg(n∕b j).

We can use this equation for f (n) to estimate the size of functions that satisfy divide-and-conquer

relations.

THEOREM 1 Let f be an increasing function that satisfies the recurrence relation

f (n) = af (n∕b) + c

whenever n is divisible by b, where a ≥ 1, b is an integer greater than 1, and c is a positive

real number. Then

f (n) is

{
O(nlogb a) if a > 1,

O(log n) if a = 1.

Furthermore, when n = bkand a ≠ 1, where k is a positive integer,

f (n) = C1n
logb a + C2,

where C1 = f (1) + c∕(a − 1) and C2 = −c∕(a − 1).

Proof: First let n = bk. From the expression for f (n) obtained in the discussion preceding the

theorem, with g(n) = c, we have

f (n) = akf (1) +

k−1∑
j= 0

a jc = akf (1) + c

k−1∑
j= 0

a j.

8.3 Divide-and-Conquer Algorithms and Recurrence Relations 557

When a = 1 we have

f (n) = f (1) + ck .

Because n = bk, we have k = logb n. Hence,

f (n) = f (1) + c logb n .

When n is not a power of b, we have bk < n < bk+1, for a positive integer k. Because f is increas-

ing, it follows that f (n) ≤ f (bk+1) = f (1) + c(k + 1) = (f (1) + c) + ck ≤ (f (1) + c) + c logb n.
Therefore, in both cases, f (n) is O(log n) when a = 1.

Now suppose that a > 1. First assume that n = bk, where k is a positive integer. From the

formula for the sum of terms of a geometric progression (Theorem 1 in Section 2.4), it follows

that

f (n) = akf (1) + c(ak − 1)∕(a − 1)

= ak[f (1) + c∕(a − 1)] − c∕(a − 1)

= C1n
logb a + C2,

because ak = alogb n = nlogb a (see Exercise 4 in Appendix 2), where C1 = f (1) + c∕(a − 1) and

C2 = −c∕(a − 1).

Now suppose that n is not a power of b. Then bk < n < bk+1, where k is a nonnegative

integer. Because f is increasing,

f (n) ≤ f (bk+1) = C1a
k+1 + C2

≤ (C1a)a
logb n + C2

= (C1a)n
logb a + C2,

because k ≤ logb n < k + 1.

Hence, we have f (n) is O(nlogb a).

Examples 6–9 illustrate how Theorem 1 is used.

EXAMPLE 6 Let f (n) = 5f (n∕2) + 3 and f (1) = 7. Find f (2k), where k is a positive integer. Also, estimate

f (n) if f is an increasing function.

Solution: From the proof of Theorem 1, with a = 5, b = 2, and c = 3, we see that if n = 2k, then

Extra

Examples

f (n) = ak[f (1) + c∕(a − 1)] + [−c∕(a − 1)]

= 5k[7 + (3∕4)] − 3∕4

= 5k(31∕4) − 3∕4.

Also, if f (n) is increasing, Theorem 1 shows that f (n) is O(nlogb a) = O(nlog 5). ◂

We can use Theorem 1 to estimate the computational complexity of the binary search al-

gorithm and the algorithm given in Example 2 for locating the minimum and maximum of a

sequence.

558 8 / Advanced Counting Techniques

EXAMPLE 7 Give a big-O estimate for the number of comparisons used by a binary search.

Solution: In Example 1 it was shown that f (n) = f (n∕2) + 2 when n is even, where f is the

number of comparisons required to perform a binary search on a sequence of size n. Hence,

from Theorem 1, it follows that f (n) is O(log n). ◂

EXAMPLE 8 Give a big-O estimate for the number of comparisons used to locate the maximum andminimum

elements in a sequence using the algorithm given in Example 2.

Solution: In Example 2 we showed that f (n) = 2f (n∕2) + 2, when n is even, where f is the

number of comparisons needed by this algorithm. Hence, from Theorem 1, it follows that f (n)

is O(nlog 2) = O(n). ◂

We now state a more general, and more complicated, theorem, which has Theorem 1 as a

special case. This theorem (or more powerful versions, including big-Theta estimates) is some-

times known as the master theorem because it is useful in analyzing the complexity of many

important divide-and-conquer algorithms.

THEOREM 2 MASTER THEOREM Let f be an increasing function that satisfies the recurrence
relation

f (n) = af (n∕b) + cnd

whenever n = bk, where k is a positive integer, a ≥ 1, b is an integer greater than 1, and c
and d are real numbers with c positive and d nonnegative. Then

f (n) is

⎧⎪⎨⎪⎩

O(nd) if a < bd,

O(nd log n) if a = bd,

O(nlogb a) if a > bd.

The proof of Theorem 2 is left for the reader as Exercises 29–33.

EXAMPLE 9 Complexity of Merge Sort In Example 3 we explained that the number of comparisons used

by the merge sort to sort a list of n elements is less thanM(n), whereM(n) = 2M(n∕2) + n. By

the master theorem (Theorem 2) we find thatM(n) is O(n log n), which agrees with the estimate
found in Section 5.4. ◂

EXAMPLE 10 Give a big-O estimate for the number of bit operations needed to multiply two n-bit integers

using the fast multiplication algorithm described in Example 4.

Solution: Example 4 shows that f (n) = 3f (n∕2) + Cn, when n is even, where f (n) is the number

of bit operations required to multiply two n-bit integers using the fast multiplication algorithm.

Hence, from the master theorem (Theorem 2), it follows that f (n) is O(nlog 3). Note that log

3 ∼ 1.6. Because the conventional algorithm for multiplication uses O(n2) bit operations, the

fast multiplication algorithm is a substantial improvement over the conventional algorithm in

8.3 Divide-and-Conquer Algorithms and Recurrence Relations 559

terms of time complexity for sufficiently large integers, including large integers that occur in

practical applications. ◂

EXAMPLE 11 Give a big-O estimate for the number of multiplications and additions required to multiply two

n × n matrices using the matrix multiplication algorithm referred to in Example 5.

Solution: Let f (n) denote the number of additions and multiplications used by the algorithm

mentioned in Example 5 to multiply two n × n matrices. We have f (n) = 7f (n∕2) + 15n2∕4,
when n is even. Hence, from the master theorem (Theorem 2), it follows that f (n) is O(nlog 7).

Note that log 7 ∼ 2.8. Because the conventional algorithm for multiplying two n × n matrices

uses O(n3) additions and multiplications, it follows that for sufficiently large integers n, includ-

ing those that occur in many practical applications, this algorithm is substantially more efficient

in time complexity than the conventional algorithm. ◂

THE CLOSEST-PAIR PROBLEM We conclude this section by introducing a divide-and-

conquer algorithm from computational geometry, the part of discrete mathematics devoted to

algorithms that solve geometric problems.

EXAMPLE 12 The Closest-Pair Problem Consider the problem of determining the closest pair of points in

Links

a set of n points (x1, y1),… , (xn, yn) in the plane, where the distance between two points (xi, yi)

and (xj, yj) is the usual Euclidean distance
√
(xi − xj)

2 + (yi − yj)
2. This problem arises in many

applications such as determining the closest pair of airplanes in the air space at a particular

altitude being managed by an air traffic controller. How can this closest pair of points be found

in an efficient way?

Solution: To solve this problem we can first determine the distance between every pair of points

and then find the smallest of these distances. However, this approach requires O(n2) compu-
It took researchers more

than 10 years to find

an algorithm with

O(n log n) complexity

that locates the closest

pair of points among n

points.

tations of distances and comparisons because there are C(n, 2) = n(n − 1)∕2 pairs of points.
Surprisingly, there is an elegant divide-and-conquer algorithm that can solve the closest-pair

problem for n points using O(n log n) computations of distances and comparisons. The algo-
rithm we describe here is due to Michael Samos (see [PrSa85]).

For simplicity, we assume that n = 2k, where k is a positive integer. (We avoid some tech-
nical considerations that are needed when n is not a power of 2.) When n = 2, we have only
one pair of points; the distance between these two points is the minimum distance. At the start

of the algorithm we use the merge sort twice, once to sort the points in order of increasing x

coordinates, and once to sort the points in order of increasing y coordinates. Each of these sorts

requires O(n log n) operations. We will use these sorted lists in each recursive step.
The recursive part of the algorithm divides the problem into two subproblems, each involv-

ing half as many points. Using the sorted list of the points by their x coordinates, we construct a

vertical line l dividing the n points into two parts, a left part and a right part of equal size, each

containing n∕2 points, as shown in Figure 1. (If any points fall on the dividing line l, we divide
them among the two parts if necessary.) At subsequent steps of the recursion we need not sort

on x coordinates again, because we can select the corresponding sorted subset of all the points.

This selection is a task that can be done with O(n) comparisons.

There are three possibilities concerning the positions of the closest points: (1) they are both

in the left region L, (2) they are both in the right region R, or (3) one point is in the left region

and the other is in the right region. Apply the algorithm recursively to compute dL and dR,

where dL is the minimum distance between points in the left region and dR is the minimum

distance between points in the right region. Let d = min(dL, dR). To successfully divide the
problem of finding the closest two points in the original set into the two problems of finding the

560 8 / Advanced Counting Techniques

L R

closest
pair

dL

dR

d d

In this illustration the problem of finding the
closest pair in a set of 16 points is reduced to
two problems of finding the closest pair in
a set of eight points and the problem of
determining whether there are points closer
than d = min(dL, dR) within the strip of
width 2d centered at .

FIGURE 1 The recursive step of the algorithm for solving the closest-pair problem.

shortest distances between points in the two regions separately, we have to handle the conquer

part of the algorithm, which requires that we consider the case where the closest points lie in

different regions, that is, one point is in L and the other in R. Because there is a pair of points

at distance d where both points lie in R or both points lie in L, for the closest points to lie in

different regions requires that they must be a distance less than d apart.

For a point in the left region and a point in the right region to lie at a distance less than d

apart, these points must lie in the vertical strip of width 2d that has the line l as its center. (Oth-

erwise, the distance between these points is greater than the difference in their x coordinates,

which exceeds d.) To examine the points within this strip, we sort the points so that they are listed

in order of increasing y coordinates, using the sorted list of the points by their y coordinates.

At each recursive step, we form a subset of the points in the region sorted by their y coordi-

nates from the already sorted set of all points sorted by their y coordinates, which can be done

with O(n) comparisons.

Beginning with a point in the strip with the smallest y coordinate, we successively examine

each point in the strip, computing the distance between this point and all other points in the

strip that have larger y coordinates that could lie at a distance less than d from this point. Note

that to examine a point p, we need only consider the distances between p and points in the set

that lie within the rectangle of height d and width 2d with p on its base and with vertical sides

at distance d from l.

We can show that there are at most eight points from the set, including p, in or on this 2d × d

rectangle. To see this, note that there can be at most one point in each of the eight d∕2 × d∕2
squares shown in Figure 2. This follows because the farthest apart points can be on or within

one of these squares is the diagonal length d∕
√
2 (which can be found using the Pythagorean

theorem), which is less than d, and each of these d∕2 × d∕2 squares lies entirely within the left
region or the right region. This means that at this stage we need only compare at most seven

distances, the distances between p and the seven or fewer other points in or on the rectangle,

with d.

Because the total number of points in the strip of width 2d does not exceed n (the total num-

ber of points in the set), at most 7n distances need to be compared with d to find the minimum

distance between points. That is, there are only 7n possible distances that could be less than d.

Consequently, once the merge sort has been used to sort the pairs according to their x coordi-

nates and according to their y coordinates, we find that the increasing function f (n) satisfying

the recurrence relation

f (n) = 2f (n∕2) + 7n,

8.3 Divide-and-Conquer Algorithms and Recurrence Relations 561

d/2

p

d/2

d/2

d/2 d/2 d/2

d/ 2

At most eight points, including p,
can lie in or on the 2d × d rectangle
centered at because at most one
point can lie in or on each of the
eight (d/2) × (d/2) squares.

FIGURE 2 Showing that there are at most seven other points to consider for each point

in the strip.

where f (2) = 1, exceeds the number of comparisons needed to solve the closest-pair problem

for n points. By the master theorem (Theorem 2), it follows that f (n) isO(n log n). The two sorts
of points by their x coordinates and by their y coordinates each can be done using O(n log n)
comparisons, by using the merge sort, and the sorted subsets of these coordinates at each of the

O(log n) steps of the algorithm can be done using O(n) comparisons each. Thus, we find that
the closest-pair problem can be solved using O(n log n) comparisons. ◂

Exercises

1. How many comparisons are needed for a binary search
in a set of 64 elements?

2. How many comparisons are needed to locate the max-
imum and minimum elements in a sequence with 128
elements using the algorithm in Example 2?

3. Multiply (1110)2 and (1010)2 using the fast multiplica-
tion algorithm.

4. Express the fast multiplication algorithm in pseudocode.

5. Determine a value for the constant C in Example 4 and
use it to estimate the number of bit operations needed to
multiply two 64-bit integers using the fast multiplication
algorithm.

6. Howmany operations are needed to multiply two 32 × 32
matrices using the algorithm referred to in Example 5?

7. Suppose that f (n) = f (n∕3) + 1 when n is a positive inte-
ger divisible by 3, and f (1) = 1. Find

a) f (3). b) f (27). c) f (729).

8. Suppose that f (n) = 2f (n∕2) + 3 when n is an even posi-
tive integer, and f (1) = 5. Find

a) f (2). b) f (8). c) f (64). d) f (1024).

9. Suppose that f (n) = f (n∕5) + 3n2 when n is a positive in-
teger divisible by 5, and f (1) = 4. Find

a) f (5). b) f (125). c) f (3125).

10. Find f (n) when n = 2k, where f satisfies the recurrence
relation f (n) = f (n∕2) + 1 with f (1) = 1.

11. Give a big-O estimate for the function f in Exercise 10 if
f is an increasing function.

12. Find f (n) when n = 3k, where f satisfies the recurrence
relation f (n) = 2f (n∕3) + 4 with f (1) = 1.

13. Give a big-O estimate for the function f in Exercise 12 if
f is an increasing function.

14. Suppose that there are n = 2k teams in an elimination
tournament, where there are n∕2 games in the first round,
with the n∕2 = 2k−1 winners playing in the second round,
and so on. Develop a recurrence relation for the number
of rounds in the tournament.

15. How many rounds are in the elimination tournament de-
scribed in Exercise 14 when there are 32 teams?

16. Solve the recurrence relation for the number of rounds in
the tournament described in Exercise 14.

17. Suppose that the votes of n people for different candi-

dates (where there can be more than two candidates) for

a particular office are the elements of a sequence. A per-

son wins the election if this person receives a majority of

the votes.

