Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



a CHAPTER 5. DYNAMIC PROGRAMMING

k- 1 We can regard the construction of a shortest ¢ to j path as first
requiring a decision as to which is the highest indexed intermediate vertex
k. Once this decision has been made, we need to find two shortest paths,
one from i to k and the other from k to 3. Neither of these may go through a
vertex with index greater than k — 1. Using A¥(i,7) to represent the length
of a shortest path from i to j going through no vertex of index greater than
k, we obtain

A(i,§) = min {lﬂign{A*-lu, k) + A¥(k, j)}, cost(i, §)} (5.7)

Clearly, A%(i,j) = cost(i,j), 1 < i < m, 1 <j < n. We can obtain
a recurrence for A*(i, j) using an argument similar to that used before. A
shortest path from 7 to j going through no vertex higher than & either goes
through vertex k or it does not. If it does, A% (7, 7) = A*~1(i, k) + A1k, 7).
If it does not ) then no intermediate vertex has index greater than k—1. Hence
A¥(4,5) = A*"1(4,j). Combining, we get

A*(G,7) = min {A*71(i,5), A6, k) + Ak, 5)), k>1 (5.8)

The following example shows that (5.8) is not true for graphs with cycles of
negative length.

Example 5.14 Figure 5.5 shows a digraph together with its matrix A°. For
this graph A%(1,3) # min{A'(1, 3), Ag‘-r
that A%(1,3) = —oo. The length of the path

1,2,,21,2%...,1,23

can be made arbitrarily small. This is so because of the prese £
1 2 1 which has a length of —1. presence of the cyche

| Recurrence (5.8) can be solved for A™ by first computing A!, then A2
; . . Since there is no vertex in G with index greater than n:

8 A"(i,7). The computation
= Ak

Scanned

(1,2) + A'(2,3)} = 2. Instead we see °

{
- *

&
:- ‘m

-
e b O

by CamScanner



Scanned by CamScanner



Scanned by CamScanner



