CC4/GE-4 / (unit-1) Algebra-II

(A non empty pet G is paid to form a group with ruspect to a binary
(a) A non empty pet G is paid to form a group with ruspect to a binary composition if
i) G is closed under the composition +
n) + is aspociative.
iii) there exists an element e in G puch that $e + \alpha = a + e = \alpha$, $\forall a \in G$. iv) for each α in G , there exists an element α' in G such that $\alpha' + \alpha' = \alpha + \alpha' = 0$
iv) for each a in G, there exists an element a'in G such that
The group is denoted by the symbol (G2+).
The group is denoted by the symbol (Gp*). The element e is sorred to be the identity element of the group and there is only one such element in the arms.
The state of the s
The element a paid to be an inverse of a and there is
only one inverse for each a in G.
(f) (G,+) is paid to be a commetative group or abelian group if a+b = b+a, for all a,b in G.
4 a+b = b+a, for all a,b in G.
Examples: 1) The set If forms a commutative group with respecte to addition:
i) Let a, b = 7, then a+b = 7, this shows that 7 is closed under +.
in) Addition is associative in R, 7 CR, po addition is associative in I.
un) 0 to the identity element in I.
iv) for each a = 4, -at 4 and a+ (-a) = 0; po - a is the
inverse of a.
v) for each pair of as b in 4, a+b=b+a, so +' is
commetative. , so (7,+) à a commetative group.
The same and the first of the same of the same of the same of the
2) (Bot) is comutative group 3) (R,+) is comutative group.
4) (C2+) is commetative group.
Marie Marie San Land Marie San Date (2004) - (2004) va (2004)
5) Let M2(R) be the out of all 2x2 matrices whose elements
are real numbers.
M2(R) is a commetative group w. r. t (+)
the state of the s

vii) a. (b.c) = (a.b).c, +a,b,cin R.

viii) a. (b+c) = a.b + a.c, +a,b,cin R.

ix) (b+c). a = b.a + c.a, +a,b,cin R.

then (R,+,.) is paid to be a ring. Ris comutative if

is commutative. If R has multiplicative mity i.e. T

puch that a. I = I.a = a, +acR, then Ris

paid to be the ring with unity.

Eq: (4,+,.) is commutative ring with mity

(R,+,.) is commutative ring with mity

(R,+,.) is commutative ring with mity

5. Ring of Gaussian integers. Let us consider the subset of \mathbb{C} given by $\mathbb{Z}[i] = \{a + ib : a, b \in \mathbb{Z}\}.$

 $\mathbb{Z}[i]$ is the set of all complex numbers of the form a+ib, where a and b are integers.

 $\mathbb{Z}[i]$ forms a ring under addition and multiplication of complex numbers. This is a commutative ring with unity.

This ring is called the ring of Gaussian integers.

6. Ring of Gaussian numbers. Let us consider the subset of \mathbb{C} given by $\mathbb{Q}[i] = \{a + ib : a, b \in \mathbb{Q}\}.$

 $\mathbb{Q}[i]$ is the set of all complex numbers of the form a+ib, where a and b are rational numbers.

 $\mathbb{Q}[i]$ forms a ring under addition and multiplication of complex numbers. This is a commutative ring with unity.

This ring is called the ring of Gaussian numbers.

7. Ring of Quaternions. Let us consider the set H of 2×2 complex matrices given by

$$H = \left\{ \begin{pmatrix} a+ib & c+id \\ -c+id & a-ib \end{pmatrix} : a,b,c,d \in \mathbb{R} \right\}.$$

$$\begin{pmatrix} a+ib & c+id \\ -c+id & a-ib \end{pmatrix} \text{ can be expressed as } aI+bJ+cK+dL, \text{ where}$$

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ J = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \ K = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \ L = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}.$$

(H,+,.) is a ring with respect to matrix addition and matrix multiplication. This is a non-commutative ring with unity, $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ being the unity.

This ring is called the ring of real quaternions.

The subset $\left\{ \left(\begin{array}{cc} a+ib & c+id \\ -c+id & a-ib \end{array} \right): a,b,c,d\in\mathbb{Q} \right\}$ forms a ring with unity. This ring is called the ring of rational quaternions. This is also a non-commutative ring with unity.

The subset $\left\{ \begin{pmatrix} a+ib & c+id \\ -c+id & a-ib \end{pmatrix} : a,b,c,d \in \mathbb{Z} \right\}$ forms a ring with unity. This ring is called the ring of integral quaternions. This is also a non-commutative ring with unity.

3.4. Field.

A commutative skew field is a field.

In other words, a non-trivial ring R with unity is a field if it be commutative and each non-zero element of R is a unit.

Therefore, a non-empty set F forms a field with respect to two binary compositions + and ., if

- (i) $a+b \in F$ for all a, b in F;
- (ii) a + (b + c) = (a + b) + c for all a, b, c in F;
- (iii) there exists an element, called the zero element and denoted by 0, in F such that a + 0 = a for all a in F;
 - (iv) for each element a in F there exists an element, denoted by -a, in F such that a + (-a) = 0;
 - (v) a+b=b+a for all a, b in F;
 - (vi) $a.b \in F$ for all a, b in F;
 - (vii) a.(b.c) = (a.b).c for all a, b, c in F;
- (viii) there exists an element, called the identity element and denoted by I, in F such that a.I = a for all a in F;
- (ix) for each non-zero element a in F there exists an element, denoted by a^{-1} , in F such that $a.(a^{-1}) = I$;
 - (x) a.b = b.a for all a, b in F;
 - (xi) a.(b+c) = a.b + a.c for all a, b, c in F.

The field is denoted by (F, +, .), or by F.

Examples.

- 1. The rings $(\mathbb{Q}, +, .)$, $(\mathbb{R}, +, .)$, $(\mathbb{C}, +, .)$ are familiar examples of a field. They are respectively called the field of all rational numbers, often denoted by \mathbb{Q} ; the field of all real numbers, often denoted by \mathbb{R} ; the field of all complex numbers, often denoted by \mathbb{C} .
- 2. The set $\{a+b\sqrt{2}: a,b\in\mathbb{Q}\}$ forms a commutative ring with unity under addition and multiplication. The multiplicative inverse of $a+b\sqrt{2}$ where $(a,b)\neq (0,0)$ is $\frac{a}{a^2-2b^2}+\frac{-b}{a^2-2b^2}\sqrt{2}$ and this belongs to the set because $a^2-2b^2\neq 0$ and $\frac{a}{a^2-2b^2}\in\mathbb{Q}$, $\frac{-b}{a^2-2b^2}\in\mathbb{Q}$. Thus each non-zero element is a unit. Therefore the set forms a field. This is denoted by $\mathbb{Q}[\sqrt{2}]$.

Similarly, $\mathbb{Q}[\sqrt{3}]$, $\mathbb{Q}[\sqrt{5}]$, $\mathbb{Q}[\sqrt{7}]$, ... are fields.

3. The ring $(\mathbb{Z}_5, +, .)$ is a commutative ring with unity and each non-zero element of the ring is a unit. Therefore the ring $(\mathbb{Z}_5, +, .)$ is a field. As it contains a finite number of elements, it is a *finite* field.

Similarly, $(\mathbb{Z}_3, +, .)$, $(\mathbb{Z}_7, +, .)$, ... are finite fields.

3.5. Subring.

Let (R, +, ...) be a ring and S be a non-empty subset of R such that \S is stable under + and ., i.e.,

$$a \in S$$
, $b \in S \Rightarrow a + b \in S$ and $a.b \in S$.

+ is a mapping from $R \times R$ to R. Since S is stable under +, the restriction of + to $S \times S$, say \oplus , is a mapping from $S \times S$ to S and $\oplus : S \times S \to S$ is defined by

$$a \oplus b = a + b$$
 for all $a, b \in S$.

Since S is stable under ., the restriction of . to $S \times S$, say \odot , is a mapping from $S \times S$ to S and $\odot : S \times S \to S$ is defined by

$$a \odot b = a.b$$
 for all $a.b \in S$.

If S forms a ring under the restriction compositions, S is said to be a subring of R. In this case we also say that R is an over-ring of S.

In other words, a non-empty subset S of R is said to be a subring of (R, +, .) if S forms a ring under the compositions + and \cdot restricted to S.

If S is a subring of (R, +, .) it follows that (S, +) is a subgroup of the group (R, +) and (S, .) is a subsemigroup of the semigroup (R, .).

Therefore the zero element in R is also the zero element in S and the additive inverse of an element in S is also the additive inverse of the same element in R.

Nothing can be said about the equality or even about the existence of the unities of R and S. It may be possible that R and S have different unities, or S may have no unity while R has one such.

Examples.

1. Let R be a ring. Then R itself can be considered as a subring of R. This is said to be the *improper subring* of R.

The zero element of R forms a ring by itself. This is said to be the trivial subring of R.

- 2. $(\mathbb{Z}, +, .)$ is a ring with unity. $(2\mathbb{Z}, +, .)$ is a subring of the ring $(\mathbb{Z}, +, .)$ but the subring does not contain the unity.
- 3. $\mathbb{Z} \times \mathbb{Z}$ is a ring under addition + and multiplication . defined by (a,b) + (c,d) = (a+c,b+d) and (a,b).(c,d) = (ac,bd) for $(a,b),(c,d) \in \mathbb{Z} \times \mathbb{Z}$.

It is a commutative ring with unity, (1,1) being the unity.

Let us consider the subset S of $\mathbb{Z} \times \mathbb{Z}$ given by $S = \{(a,0) : a \in \mathbb{Z}\}$.

Then S forms a ring under addition and multiplication restricted to S. So S is a subring of $\mathbb{Z} \times \mathbb{Z}$.

(1,0) is the unity in S, since (1,0).(a,0) = (a,0) for all $(a,0) \in S$.

Therefore the unity in the subring S is different from the unity in the ring $\mathbb{Z} \times \mathbb{Z}$.

Let us consider the subset T of $\mathbb{Z} \times \mathbb{Z}$ given by $T = \{(a, a) : a \in \mathbb{Z}\}.$ Then T is a subring of $\mathbb{Z} \times \mathbb{Z}$.

- (1,1) is the unity in T and it is same as the unity in the ring $\mathbb{Z} \times \mathbb{Z}$.
- **4.** $(\mathbb{Q}, +...)$ is a ring with unity, 1 being the unity. $(\mathbb{Z}, +,...)$ is a subring of the ring $(\mathbb{Q}, +,...)$.

Here the unity in the subring is same as that in the ring.

Theorem 3.5.1. Let (R, +, .) be a ring. A non-empty subset S of R forms a subring of R if and only if

- (i) (S, +) is a subgroup of (R, +), and
- (ii) S is closed under multiplication.

Proof. Let S be a subring of R. Then both the conditions (i) and (ii) are satisfied.

Conversely. let the conditions (i) and (ii) be satisfied in S.

Since (i) holds, (S, +) is a commutative group. Since (ii) holds, S is closed under multiplication.

We need only to verify that multiplication is associative on S and the distributive laws hold in S. But these are hereditary properties and since they hold in R, they hold in the subset S.

Therefore S is a subring.

Theorem 3.5.2. Let (R, +, .) be a ring and S be a non-empty subset of R. Then S is a subring of R if and only if

(i) $a \in S$, $b \in S \Rightarrow a - b \in S$; and (ii) $a \in S$, $b \in S \Rightarrow a.b \in S$.

3.6. Subfield.

A non-empty subset K of a field F is said to be a *subfield* of F if the elements of K form a field with respect to the compositions on Frestricted to K.

Theorem 3.6.1. Let F be a field. A non-empty subset K is a subfield of F if and only if

- (i) $a \in K$, $b \in K \Rightarrow a b \in K$; and
- (ii) $a \in K$, $0 \neq b \in K \Rightarrow a.b^{-1} \in K$.

Proof left to the reader.

Examples.

- # 2 | S = 8 | A = 1 | 1. $(\mathbb{R}, +, .)$ is a field. $\mathbb{Q} \subset \mathbb{R}$ and $(\mathbb{Q}, +, .)$ is a field. Therefore $(\mathbb{Q}, +, .)$ is a subfield of the field $(\mathbb{R}, +, .)$.
- **2.** Let $\mathbb{Q}[\sqrt{2}]$ be the subset of \mathbb{R} defined by $\mathbb{Q}[\sqrt{2}] = \{a+b\sqrt{2} : a, b \in \mathbb{Q}\}.$ Then $\mathbb{Q}[\sqrt{2}]$ is a non-empty subset of \mathbb{R} .

Let $a + b\sqrt{2} \in \mathbb{Q}[\sqrt{2}], c + d\sqrt{2} \in \mathbb{Q}[\sqrt{2}].$ Then $a, b, c, d \in \mathbb{Q}$.

$$(a+b\sqrt{2}) - (c+d\sqrt{2}) = (a-c) + (b-d)\sqrt{2} \in \mathbb{Q}[\sqrt{2}]\dots (i)$$

Let $p+q\sqrt{2}$ be a non-zero element of $\mathbb{Q}[\sqrt{2}]$. Then $(p,q)\neq (0,0)$.

$$(p+q\sqrt{2})^{-1} = \frac{p}{p^2-2q^2} + \frac{-q\sqrt{2}}{p^2-2q^2} \in \mathbb{Q}[\sqrt{2}], \text{ since } p^2-2q^2 \neq 0 \text{ for rational}$$

$$p, q \text{ where } (p,q) \neq (0,0) \text{ and } \frac{p}{p^2-2q^2} \in \mathbb{Q}, \frac{-q}{p^2-2q^2} \in \mathbb{Q}.$$

$$(a+b\sqrt{2})(p+q\sqrt{2})^{-1} = \frac{ap-2bq}{p^2-2q^2} + \frac{bp-aq}{p^2-2q^2}\sqrt{2} \in \mathbb{Q}[\sqrt{2}]\dots$$
 (ii)

From (i) and (ii) it follows that $\mathbb{Q}[\sqrt{2}]$ is a subfield of the field \mathbb{R} .

Real vector space. A non-empty set V is said to form a real vector space (or a vector space over the field R) if

(i) there is a binary composition (+) on V, called 'addition', satisfying

the conditions -

v1. $\alpha + \beta \in V$ for all $\alpha, \beta \in V$;

V2. $\alpha + \beta = \beta + \alpha$ for all $\alpha, \beta \in V$;

V3. $\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$ for all $\alpha, \beta, \gamma \in V$;

V4. there exists an element θ in V such that $\alpha + \theta = \alpha$ for all $\alpha \in V$;

V5. for each α in V there exists an element $-\alpha$ in V such that $\alpha + (-\alpha) = \theta;$

and (ii) there is an external composition of \mathbb{R} with V, called 'multi-

plication by real numbers' satisfying the conditions -

V6. $c\alpha \in V$ for all $c \in \mathbb{R}$, all $\alpha \in V$;

V7. $c(d\alpha) = (cd)\alpha$ for all $c, d \in \mathbb{R}$, all $\alpha \in V$;

V8. $c(\alpha + \beta) = c\alpha + c\beta$ for all $c \in \mathbb{R}$, all $\alpha, \beta \in V$;

V9. $(c+d)\alpha = c\alpha + d\alpha$ for all $c, d \in \mathbb{R}$, all $\alpha \in V$;

V10. $1\alpha = \alpha, 1$ being the identity element in \mathbb{R} .

The elements of V are called *vectors* and the elements of $\mathbb R$ are called scalars. R is said to be the ground field (or the field of scalars) of the vector space V. space kness. Let V be the set of allign a

Examples.

1. Real vector space \mathbb{R}^n . Let V be the set of all ordered n-tuples $\{(a_1,a_2,\ldots,a_n):a_i\in\mathbb{R}\}.$

Let + be a composition on V, called 'addition', defined by

 $(a_1, a_2, \dots, a_n) + (b_1, b_2, \dots, b_n) = (a_1 + b_1, a_2 + b_2, \dots, a_n + b_n)$ and an external composition of \mathbb{R} with V, called 'multiplication by real numbers' be defined by

 $c(a_1, a_2, \ldots, a_n) = (ca_1, ca_2, \ldots, ca_n), c \in \mathbb{R}.$

Then the conditions V1-V10 are satisfied. Therefore V is a real Vector space and it is denoted by \mathbb{R}^n .

 $(0,0,\ldots,0)$ is the null vector of \mathbb{R}^n and it is denoted by θ .

In a similar manner the vector spaces \mathbb{R}^2 , \mathbb{R}^3 , \mathbb{R}^4 , ... are defined. The Ritself forms a real vector space.

Real vector space. $\{a+ib:$

 $\mathbb{R}, b \in \mathbb{R}, i = \sqrt{(-1)}$.

Let + be a composition on \mathbb{C} , called 'addition', defined by (a+ib)+(c+id)=(a+c)+i(b+d);

4.3. Sub-spaces.

Let V be a vector space over a field F with respect to addition in and multiplication by elements of F.

Let W be a non-empty subset of V. If W be stable under then the restriction of + to $W \times W$ is a mapping from $W \times W$ W and the restriction of . to $F \times W$ is a mapping from $F \times W$ The restriction of +, say ⊕, is a composition on W and is defined $\alpha \oplus \beta = \alpha + \beta$ for all $\alpha, \beta \in W$. The restriction of ., say \odot , is an energy composition of F with W and is defined by $c \odot \alpha = c \cdot \alpha$ for all $c \in F_{\epsilon}$ all $\alpha \in W$.

If W forms a vector space over F with respect to @ and @, then is said to be a sub-vector space or a linear subspace or a subspace of

Theorem 4.3.1. A non-empty subset W of a vector space V over a find F is a subspace of V if and only if

(i) $\alpha \in W$, $\beta \in W \Rightarrow \alpha + \beta \in W$; and (ii) $\alpha \in W$, $c \in F \Rightarrow \alpha \in W$.

Proof. Let the conditions hold in W.

Let $\alpha, \beta \in W$. Since F is a field, $-1 \in F$ where 1 is the identity element in F. By (ii) $-1\beta \in W$, i.e., $-\beta \in W$.

Then by (i) $\alpha + (-\beta) \in W$, i.e., $\alpha - \beta \in W$.

Thus $\alpha, \beta \in W \Rightarrow \alpha - \beta \in W$.

This proves that W is a subgroup of the additive group V. Since is a commutative group, W is also a commutative subgroup of V.

Therefore the conditions V1-V5 for a vector space are satisfied in V6 is satisfied in W by(ii). The conditions V7-V10 are satisfied in since they are hereditary properties. Thus W is by itself a vector over F and so W. over F and so W is a subspace of V.

The necessity of the conditions (i) and (ii) follows from the definition vector space

Note. The two conditions (i) and (ii) can also be expressed as the same condition $-a\alpha + b\beta \in W$ condition $-a\alpha + b\beta \in W$ for all $\alpha, \beta \in W$ and all $a, b \in F$.

Examples.