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5. Ring of Gz.mssian integers. Let us consider the subset, of ¢! iy
byZ[‘];{a+zb:a,b§Z}. T

Z[i] is the set of all complex numbers of
b are integers.

Z[i) f?rr}ls a ring under addition and multiplication of complex num-
bers. This is a commutative ring with unity.

This ring is called the ring of Gaussian integers.

the form a + ib, where o 5114

6. Ring of Gaussian numbers, et
by Qi) ={a+ib: a, bc Q).

Q[i] is the set of all complex numbers of the form a + ib, where a and
b are rational numbers.

Qli) forms a ring under addition and multiplication of complex num-
bers. This is a commutative ring with unity.

This ring is called the ring of Gaussian numbers.

us consider the subset of C given

7. Ring of Quaternions. Let us consider the set H of 2 x 2 complex
matrices given by

a+ib c+id \
H—{( —c4id a_ib).a,b,c,dek}.

1 a+ib c+id
—c+1id a-—1ib

1 0 i 0 (0 1 (0 i
3 1=(0 1),.1:(0 _i),K—(__l 0),1,_(2. ol

(H,+,.) is a ring with respect to matrix addition and matrix mul-

) can be expressed as al 4+ bJ + cK + dL, where

Ko

g . . o ring.with ugitv. T < L. 9
. tiplication. This is a non-commutative ring with unity, I = {

being the unity. . .

f This ring is called the ring of real quaternions.
a+ib c+id

ThBBUbset' {( -C-'l-i(l a—1ib

unity, This ring is called the ring of rational quaternions. This is also a

non-commutative ring with unity. |

ta,b,c,d € Q} forms a ring with

The s{ubset' {( f c.:-ifd Zt?lf ) :a,b,c,d € Z} forms a ring with
unity, This ring is called the ring of integral quaternions. This is also a

Bon-commutative ring with unity. '
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3.4. Field.

A commutative skew field is a field.
In other words, a non-trivial ring R with unity is a field if it be
commutative and each non-zero element of R is a unit.

Therefore, a non-empty set F forms a field with respect to two binary
compositions + and ., if

(i)a+be F for all a.bin Fj;

(i) a+ (b+c)=(a+b)+c foralab.cin F;

(iii) there exists an element, called the zero element and denoted by
0,in F such thata+0=a¢a for all a in Fj

(iv) for each element a in F there exists an element, denoted by
- —a,in F such that a + (—a) = 0;
(v)a+b=b+a for all a.b in Fj;
(vi)abe F foralla,bin F;
j.,‘.',(vii) a.(b.c) = (a.b)c for all a,b,c in F;
viii) there exists an element, called the identity element and denoted
.1, in F such that a.] =@ for all a in F;
X )for each non-zero element a in F there exists an element, denoted
in F such that a.(a”t) =1,
%) 6.b = b.a for all a.bin F;
(b+ c) = a.b +a.c for all a,b,cin F.
xsdenoted by (F,+..), or by F.
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208 HIGHER ALGEBRA

Examples.

1. 'The rings (Q,+,.), (R,+,.), (C,+,.) are familiar examples of 4
field. They arc respectively called the field of all rational numbers, often
denoted by Q; the field of all real numbers, often denoted by R; the field
of all complex numbers, often denoted by C.

2. The set {a + bv2 : a,b € Q} forms a commutative ring with unity
under addition and multiplication. The multiplicative inverse of a + b2
where (a,b) # (0,0) is —25 + a‘g'_:_%g'\/i and this belongs to the set
because a? — 2b® # 0 and % € Q, x=%7 € Q. Thus each non-zero
element is a unit. Therefore the set forms a field. This is denoted by

Q[v2].
Similarly, Q[v/3], Q[v5], Q[V7], ... are fields.

3. The ring (Zs, +, .) is a commutative ring with unity and each non-zero
element of the ring is a unit. Therefore the ring (Zs, +,.) is a field. As
it contains a finite number of elcments, it is a finite field.

Similarly, (Zs, +,.), (Z7,+,.), ... are finite fields.

™ L2l A - A ~ T Y e
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3.5. Subring.

Let (R, +..) be a ring and S be a non-empty subset of R such that §

is stable under + and ., i.e.,
acS, beS=>a+beSandabes.

+ is a mapping from R x R to R. Since S is stable under +, the
restriction of + to § x S, say @, is a mapping from S x S to & ang
D: 85X 8§ — §is defined by

asb=a+bforalabes.

Since S is stable under ., the restriction of . to S x S, say ©. is 3
mapping from $ x Sto Sand ©: 8 x § — § is defined by

aZlb=abforalla.besS.

If § forms a ring under the restriction compositions, S is said to be
a subring of R. In this case we also say that R is an over-ring of .

In other words, a non-empty subset S of R is said to be a subring of
(R.+..) if S forms a ring under the compositions + and . restricted t,
S.

If S is a subring of (R, +..) it follows that (S, +) is a subgroup of the
group (R.+) and (S..) is a subsemigroup of the semigroup (R..).

Therefore the zero element in I is also the zero element in 5 and the

additive inverse of an element in S is also the additive inverse of the same
element in 1.

Nothing can be said about the equality or even about the existence
of the unities of R and S. It may be possible that R and S have differeut
unities, or § may have no unity while R has one such.

Examples.
1. Let I be a ring. Then R itself can be considered as
This is said to be the improper subring of R.

The zero element of R forms a r
trivial subring of R.

a subring of Il
ing by itself. This is said to be th

2. (Z,+,.) is a ring with unity. (2Z, +,.) is a subring of ’ )
but the subring does not contaj ) ng of the ring (2, +

3. Z % Z s aring under addition + and multiplication .

e b) (e d)=(atebtd , =
o) ) and (a,b).(c, d) = (
It is a commutative ring with unity, (1,1)

Let us consider the subset § of Z, x Z, Bive

I defined by ’
ac, bd) for (a,b), (c,d)¢

being the unity.
nby S = {(a,0):aell
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'_ RINGS AND FIELDS 215

Then: S forms a ring under addition ap
‘§ §. So .S is asubring of Z x Z.

(1,0) is the unity in S, since (1,0).(a,0) = (

Therefore the unity in the subring S is diffe
k ring Z x Z.

I Let us consider the subset T of 7 x Z
Then T is a subring of Z x Z.

(1,1) is the unity in T and it is same as the unity in the ring Z x Z.

d multiplication restricted to

¢,0) for all (a,0) € 5.
rent from the unity in the

given by T = {(a,q) : a €.Z}.

4. (Q,+..) is a ring with unity, 1 being the unity. (Z,+,.) is a subring
of the ring (Q, +,.).

Here the unity in the subring is same as that in the ring.

Theorem 3.5.1. Let (R, +,.) be a ring. A non-empty subset S of R
forms a subring of R if and only if

(i) (S, +) is a subgroup of (R, +), and

(ii) S is closed under multiplication.

y  Proof. Let S be a subring of R. Then both the conditions (i) and (ii) are
- satisfied. '

hf.- - Conversely. let the conditions (i) and (i) be satisficd in S.

Since (i) holds, (S.+) is a commutative group. Since (ii) holds, § is
- closed under multiplication.

- We need only to verify that multiplication is associative on S and the
distributive laws hold in S. But these are hereditary properties and since
they hold in R, they hold in the subset S.

Therefore S is a subring.

edrem 3.5.2. Let (R, +,.) be aring and S be a non-empty subset of
- Then § is a subring of R if and only if

f'i',_(i_)ia_E S, beS=a—-beS;and (ii)ae S, beS=>abeS.

. -
il P w -
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3.6. Subfield.

A non-empty subset K of a field F is said to be a subfield of F if
the elements of K form a field with respect to the compositions on F

- restricted to K.
- Theorem 3.6.1. Let F be a field. A non-empty subset K is a subfield
" of F if and only if
(i)ae K, be K=a—-b€ K; and
()eeK, 0£be K=>ableK.
~ Proof left to the reader.

,‘; Examples
1. (R,+,.)is afield. Q CR and (Q, +,.) is a field. Therefore (Q,+,.)

is a subfield of the field (R, +,.)-

2 Let Q[v/2] be the subset of R defined by Q[2] = {a+bv2:a.be Q}.
‘-'Then Q[v2] is a non-empty subsct of R. ,

| - Let a+bv2e Q[\/_], c+dv2e Q[\/—]. Then a,b,c,d € Q.
by — (c+dvE) = (a— 9+ (- DVZeQV... ()

‘ 'Let p + gv/2 be a non-zero element of Q[v2). Then (p,q) # (0,0).
‘(P-I-.q\/_ 2) Tl '_,-l’-—,-+—}ﬂ—‘/——; € Q[v2), since p2 —2¢% # 0 for rational
te (p.q) # (0,0) and 2z € Q 7747 €

b+ D) = B+ VI € @[f ... i)

ows that Q[v2] is a subfield of the field R.

(i).and (i) it foll
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eal vector space.
on-empty set V is said to form a real v
A D the field R) if ector space (or a vector

g space over : b_ oii »
(i) there s a binary composition (+) on V, called ‘addition’, s stistyinig

the ConditiOnS g
V1. o+ B €V for all o, B.€ V;

F
;\' Vz.a_hg:ﬂ—}-aforalla,ﬂev;
? V3.a+(ﬂ+7)=(a+ﬂ)+7foralla,ﬂ,7ev-
v4. there exists an element 6 in V such that o +6,’ = « for all d eV,
v5. for each o in V there exists an element —a in V' such thal;
at(-a)="b;
and (ii) there is an external composition of R with V, called ‘multi-
plication by real numbers’ satisfying the conditions —
V6. ca € V for all c € R, all o € V;
V7. ¢(da) = (cd)c for all ¢, deR,alla€eV;
V8. c(a+0) =ca+ ¢l forallc€ R, all o, €V;
V9. (c+ d)a = ca + do for allc,deR,alla € V;
V10. la = , 1 being the identity element in R.
rs and the elements of R are called

The elements of V are called vecto
or the field of svalars) of the

scalars. R is said to be the ground field (
vector space V.

: Exémples.

1. Real vector space R™. Let V be the set of all ordered n-tuples

{(al,az,.. .,an) ra; € R}.

Let 4+ be a composition on V, ¢
| and(:;l,az,...,an) + (b1,b2,- -, bn) =
nl‘un'mre,xternal composition of R with V, ca
e be defined by
£ C(alsaz,...,an) = (ca1, caz, ...,Can),CE R.

‘_ ‘"Thgn the conditions V1-V10 are satisfied. Th
0~ space and it is denoted by R”-

41::.,0) is the null vector of R"
lts;mlflar manner the vector spaces R
~>110rms a real vector space.

alled ‘addition’, defined by
(a1 + b1,02 4+ bg,--s0n T bn)
lled ‘multiplication by real

erefore V 1s @ real

and it is denoted by 6.
2 g3 R%,...are defined. The

of all complex numbers {a+ib:
alled ‘addition’, defined by
b+ d); |
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116 HIGHER ALGEBRA

4.3. Sub-spaces.
\Let V be a vector space over a field F with reapers o, .
and multiplication by elements of F. ) My
Let W be a non-empty subset of V. If W be st2bi. ..
then the restriction of + to W » W is & mapping ;‘;.7 ‘i
W and the restriction of . to F = W i8 a mapping from p/ ;lf ¥ o
The restriction of +, say @, i8 2 compogition on W zud 5 ’/:4
asf=a+ploralla,feW. The restriction of ., szy =, & z:’;:f'
composition of F with W and is defined by c @ a = c.a fur 5 ;: :.
alla e W. <
If W forms a vector space over F with respect t0 & znd ¢ vy
‘s said to be a sub-vector space or a linear subspace or z sbipes P

Theorem 4.3.1. A non-empty subset W of a vector space V o i
F is a subspace of V if and only if
(i) a € W, BeW =a+peW;and (ijaeW,ceEF=wel
Proof. Let the conditions hold in w.
Let o, f € W. Since F is a field, —1 € F where 1 is the e
element in F. By (i) =18 e W, ie, B W.
Thenby (i) a+ (-B) e W, ie,a—BEW.
Thusa,fEW =>a-FEW. =
This proves that W is a subgroup of the additive group V- 7
is a commutative group, W is also a commutative subgroup @ 1

Therefore the conditions V1-V'5 for a vector space 2= wﬁ s
V6 is satisfied in W by(ii). The conditions V7-V10 218 27 o8
since they are hereditary properties, Thus W is by its82 270

overFandeisasubspace of V. | y}
The necessity of the conditions (i) and (ii) follows from ¥
of a vector space.
?0!01;?.‘ The two conditions (i) and (ii) can also be €%
i aax+bpeW for all a,f) € W and all 2,

Examples = -
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