Cryptography and Network Security Chapter 6

Fifth Edition by William Stallings Lecture slides by Lawrie Brown (with edits by RHB)

Outline

- Multiple Encryption & Triple-DES
- Modes of Operation
 - ECB, CBC, CFB, OFB, CTR, XTS-AES

Chapter 6 – Block Cipher Operation

- Many savages at the present day regard their names as vital parts of themselves, and therefore take great pains to conceal their real names, lest these should give to evil-disposed persons a handle by which to injure their owners.
- The Golden Bough, Sir James George Frazer

Multiple Encryption & DES

- clear a replacement for DES was needed
 - theoretical attacks that can break it
 - demonstrated exhaustive key search attacks
- AES is a new cipher alternative
- prior to this alternative was to use multiple encryption with DES implementations
- Triple-DES is the chosen form

Double-DES?

- could use 2 DES encrypts on each block - C = $E_{K2} (E_{K1} (P))$
- · issue of reduction to single stage
- and have "meet-in-the-middle" attack
 works whenever use a cipher twice
 - since $X = E_{K1}(P) = D_{K2}(C)$
 - attack by encrypting P with all keys and store
 - then decrypt C with keys and match X value
 - can show takes $O(2^{56})$ steps

Triple-DES with Three-Keys

- although are no practical attacks on twokey Triple-DES, have some doubts
- can use Triple-DES with Three-Keys to avoid even these
 - $-\,C\,=\,E_{\rm K3}\,(\,D_{\rm K2}\,(\,E_{\rm K1}\,(\,P\,)\,\,)\,\,)$
- has been adopted by some Internet applications, eg PGP, S/MIME

Triple-DES with Two-Keys

- hence must use 3 encryptions

 would seem to need 3 distinct keys
- but can use 2 keys with E-D-E sequence $-C = E_{K1} (D_{K2} (E_{K1} (P)))$
 - nb encrypt & decrypt equivalent in security
 - if K1 = K2 then can work with single DES
- standardized in ANSI X9.17 & ISO8732
- · no current known practical attacks
 - several proposed impractical attacks might become basis of future attacks

Modes of Operation

- block ciphers encrypt fixed size blocks

 eg. DES encrypts 64-bit blocks with 56-bit key
- need some way to en/decrypt arbitrary amounts of data in practise
- NIST SP 800-38A defines 5 modes
- have block and stream modes
- · to cover a wide variety of applications
- · can be used with any block cipher

Electronic Codebook Book (ECB)

- message is broken into independent blocks which are encrypted
- each block is a value which is substituted, like a codebook, hence name
- each block is encoded independently of the other blocks

 $C_i = E_K (P_i)$

uses: secure transmission of single values

Advantages and Limitations of ECB

- · message repetitions may show in ciphertext
 - if aligned with message block
 - particularly with data such graphics
 - or with messages that change very little, which become a code-book analysis problem
- weakness is due to the encrypted message blocks being independent
- · main use is sending a few blocks of data

Cipher Block Chaining (CBC)

- message is broken into blocks
- linked together in encryption operation
- each previous cipher blocks is chained with current plaintext block, hence name
- use Initial Vector (IV) to start process
 C_i = E_K (P_i XOR C_{i-1})
 C₋₁ = IV
- uses: bulk data encryption, authentication

Advantages and Limitations of CBC

- a ciphertext block depends on all blocks before it
- any change to a block affects all following ciphertext blocks
- need Initialization Vector (IV)
 - which must be known to sender & receiver
 - if sent in clear, attacker can change bits of first block, and change IV to compensate
 - hence IV must either be a fixed value (as in EFTPOS)
 - or must be sent encrypted in ECB mode before rest of message

Message Padding

- at end of message must handle a possible last short block
 - which is not as large as blocksize of cipher
 - pad either with known non-data value (eg nulls)
 - or pad last block along with count of pad size
 - eg. [b1 b2 b3 0 0 0 0 5]
 - means have 3 data bytes, then 5 bytes pad+count
 - this may require an extra entire block over those in message
- there are other, more esoteric modes, which avoid the need for an extra block

Stream Modes of Operation

- block modes encrypt entire block
- may need to operate on smaller units – real time data
- convert block cipher into stream cipher
 - cipher feedback (CFB) mode
 - output feedback (OFB) mode
 - counter (CTR) mode
- use block cipher as some form of pseudorandom number generator

Cipher FeedBack (CFB)

- · message is treated as a stream of bits
- · added to the output of the block cipher
- result is fed back for next stage (hence name)
- standard allows any number of bit (1,8, 64 or 128 etc) to be feed back
 - denoted CFB-1, CFB-8, CFB-64, CFB-128 etc
- most efficient to use all bits in block (64 or 128) $C_i = P_i \text{ XOR } E_K(C_{i-1})$ (with suitable shifts) $C_{-1} = IV$
- uses: stream data encryption, authentication

Advantages and Limitations of CFB

- · appropriate when data arrives in bits/bytes
- most common stream mode
- limitation is need to stall while do block encryption after every n-bits
- block cipher is used in encryption mode at both ends to yield ps-random bitstream
- errors propagate for several blocks after the error (but not indefinitely)

Output FeedBack (OFB)

- message is treated as a stream of bits
- · output of cipher is added to message
- output is then fed back (hence name)
- feedback is independent of message
- · can be computed in advance
 - $O_i = E_K (O_{i-1})$
 - $C_i = P_i XOR O_i$
 - $O_{-1} = IV$ (Nonce)
- uses: stream encryption on noisy channels

Advantages and Limitations of OFB

- · needs an IV which is unique for each use
 - if ever reuse attacker can recover outputs
- · bit errors do not propagate
- more vulnerable to message stream modification
- · sender & receiver must remain in sync
- · only use with full block feedback
 - subsequent research has shown that only full block feedback (ie CFB-64 or CFB-128) should ever be used

Counter (CTR)

- a "new" mode, though proposed early on
- similar to OFB but encrypts counter value rather than any feedback value
- must have a different key & counter value for every plaintext block (never reused)

 $O_i = E_K (i)$

 $C_i = P_i XOR O_i$

uses: high-speed network encryptions

Advantages and Limitations of CTR

- efficiency
 - can do parallel encryptions in h/w or s/w
 - can preprocess in advance of need
 - good for bursty high speed links
- random access to encrypted data blocks
- provable security (good as other modes)
- but must ensure never reuse key/counter values, otherwise could break (cf OFB)

(c) Output feedback (OFB) mode

XTS-AES Mode

- new mode, for block oriented storage use - in IEEE Std 1619-2007
- concept of tweakable block cipher
- different requirements to transmitted data
- uses AES twice for each block

 $T_{i} = E_{K2}(i) \times \alpha^{j}$ (× and exp. in GF(2¹²⁸))

 $C_{i} = E_{K1} (P_{i} XOR T_{i}) XOR T_{i}$

- where i is tweak and j is sector no
- each sector may have multiple blocks

XTS-AES Mode per block

Advantages and Limitations of XTS-AES

- efficiency
 - can do parallel encryptions in h/w or s/w
 - random access to encrypted data blocks
- · has both nonce & counter
- addresses security concerned related to stored data