3.1 ‘ Free Vibration

We know that a body can vibrate only if it is in
stable equilibrium position. For such a body,
restoring force develops when it is displaced from
s equilibrium position. Simplest vibration is
simple harmonic motion; here restoring force (F')is

mportional to displacement (x) from the
equilibrium position.

By free vibration we mean a vibration where
there 18 no frictional force opposing the vibration.
we know that in absence of frictional force,the
equation of motion for free simple harmonic
yibration oﬂ a particle of mass m is

Fzmd—;lz—kx
dt*
or, iz_;r_:__k_xz_o)zx ................. 1
dt” m

Here k is force constant of the system, which
is the restoring force developed per unit
displacement from mean position. It is constant
for a particular system.

The solution of the above differential equation
is given by

X = a COS(DE ) veverurerannesasessses 8.2

From this equation we get the displacement (x)
at any time (¢). Once the body is displaced and
then left to itself, it starts vibrating with constant
amplitude a and angular frequency (). As there
1s 10 loss of energy from the body, it continues its
vibration forever according to the above equation.
Its total energy is given by

Tl L ong
2 MW" 07 = constant iy, St 5, 3.3

r TheAtime-displacement curve of the motion is
-thown in Fig 3.1. You notice the x-f curve touches
© two parallel lines x = +a and x =@

Periodic ] i
. odically, because the amplitude remains
Constant,

7

SOUND

X
Fig. 3.1
The frequency of this vibration is given by
e\ m . cons BIIE iy acinieitl 34

This frequency is called the natural frequency
of vibration, which is characteristic of the
vibrating system.

Obviously free vibration is an ideal motion; we
never find it in macro-world (the world of big bodies).
In the micro-world, i.e., where individual atoms or
molecules are involved, such motions are possible.

3.2 4 Damped simple harmonic motions

In all real vibrations different kinds of frictional
forces come into play. All these forces together
are called the damping force. The vibration that
takes place in presence of damping forces is called
damped vibration.

Generally this damping force (F) 1s
proportional to the velocity (v) of the vibrating
body. Such a system is said to be linearly damped.

o
D is a constant. D is retarding force per unit
velocity.

. Equation of a damped simple harmonic
vibration is given by
3.3

d2% o e DAL . rasss e
gt a

The negative sign before the damping force

implies that it is opposing the mqtiox.m.
Damping force per unit mass is given by

Fd__Q =2b_4_x_ ............... .
'Jz—“mv dr

AT
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A damped oscillator is often described by its Q
factor (quality factor). It is a measure of the rate
of loss of its energy owing to damping. It is defined
as Q= w/2b.

LAE _spr-_@r_2n
Ey [l

We see that fractional energy loss per cycle is
inversely proportional to Q. So, bigger is Q lesser
is the energy loss per cycle. And Q is bigger when
damping factor b is smaller, That means that a
system with lesser damping has higher quality
factor.

We have seen that a body capable of vibrating
has two characteristic frequencies: its natural
frequency, n and its damped frequency, n ;- 1f the
body is disturbed and then left to itself, it always
vibrates with n , because the damping force acts.
[f the damping force could be reduced to zero, only
then the body could vibrate with its natural
frequency. But still the natural frequency » has
importance, as we shall see below, when resonance
occurs,

Solution of the differential equation :

iz—x= —wlx—2b9.

dr* dt

We take the trial solution: x = f{t)e” and see
whether and in which conditions it satisfies this
solution.

We have dx _ ﬂ_ ~bt |
di (dt bfje

N A o)
s _(_dtz Zbdt+bf e

Substituting these in the above equation we get,

d’f iz | Lae
(—dt—z— 2bz+b f e

= -’fe"-2b (% ~bf ) e

2
3 %+(m2_b2)f=0 ............... (i)

Thus we find that the function / must satisfy
the above differentia] equation,

There can pe three different Situations

depending upon the relative valyes of ® and b,

A HAND BOOK Of DEW’ i

Casel:Ifb> o, ie., the damp-
above eqn. can be written as g is

d? 2. e
;{- - (b - ® ) f=0
We take the trial solution of thig e,
f=¢€" . To find B, we substitute it in the g .
_dz_zf 9 BZ eBt ;
dt i
We get fe” (b — 0?)e" = 0. . g=

.. There are two possible values of B giy

B= +Vb? —ay

In this case, the required solution of the 4
system will be the linear combination of thegey,,
solutions. We have o

bt[Ae\/b’—mzt — 2—no’t]
==

.......
e
Sle

We have

+ Be

Here A and B are arbitrary constants, Whmﬂ
values can be determined from the initial conditions
(displacement and velocity) of the system.

We know exponential function either mcreasq ‘
or decreases monotonically, it does not oscillats.
Therefore if the system is displaced and then
released, there is no oscillation. Damping factorh
is large, therefore owing to term e, x decrem
exponentially to zero. The body comes back toifs
initial  position (x=0) asymptotically.
Asymptotically means that x is really zero aftera
very large time. Such a system is often Calledm
damped, aperiodic or dead-beat. i

Case Il : If b = @, the system is called criticalﬁ!_
damped. 3

In this condition, the eqn. (i) for fbecomes
d>f '
dt?

Integrating this we get %= A(const2

Integrating again we get, f= 4 + Bt . where B
another constant. :

.+ The motion of the critically damped sys
1S governed by the equation x = e?(A+Bt).

and. t.hen left to itself; it comes back to i
position without any oscillation. But in this ¢
1t comes back quicker than in the previous
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n both these two situations, the system is called
aPer'iOdi“'

We often try to obtain the condition of critical
gamping in @ system, when we want the system to
Jvoid oscillations and return to equilibrium

sition quickly. For this purpose, shock absorbers
are used 10 damp the oscillations of a car on its
springs- Similarl_y sensitive galvanometers in
hysics laboratories are often critically damped,
<o that the spot of light returns to its rest position
without unnecessary oscillations.

[n Fig. 3.3, we can see how displacement (x)
of the particle decreases with time (t) in
overdamped and critically damped conditions.

> ¢

Critically

Fig. 3.3

Case lll : [f b < w, i.e., the damping is small, the
_‘Zif._ 2 2
I ey (@ -b)f

This is the basic equation for simple harmonic
motion, with ©* replaced by @* — b°. So the
solutions are the corresponding sine and cosine
functions.

. The general solutions of the above equation is

f=4 cos(\/w2 —bzt) +
B sin(\/(ﬂz = bzt) ........... (iii)

Letus put 4 =a cos & and B=a sin 0. Then the
eqn. (iii) can be written in a compact form :

s cos(\/fn2 —bzt-—B), where a and & are

given by a = \/42 + B2 and tan = % .

e Pl{tting this fin the eqn. x = f(f)e ™ , we get the
uation of oscillatory motion of a lightly damped
System as given by

x= ae""cos(\/ it o 5)

Thus we get the derivation of all the different

equation for / becomes

51

kind of motion of a damped system, as discussed
above]

3.3 _d Forced Vibration

Suppose there is a body capable of vibrating
and having natural frequency n. and damped
frequency n, We like to study what happens when
a periodic external force begins to act on it.

The force is not constant. Both magnitude and
direction of the force F change sinusoidally with
time according to the equation:

F=FC0SMT.....cnunnuennnnnnnnnnnes 312

Here F is the amplitude of the applied force
and is its angular frequency. The frequency (n")
and time-period (77) of the applied force is given

............................

Now let us first describe qualitatively what
happens if such a force begins to act on a body.
capable of vibrating.

When the force just begins to act, the body
starts its vibration with two frequencies:

(i) its damped frequency, n, and (ii) the
frequency n’ of the applied force.

As a result the vibration will be a little erratic;
you cannot find a definite period. But the vibration
with the damped frequency », will soon be damped
out because of continuous loss of energy owing to
the damping force, as we have discussed above.
This initial state of vibration is called transient
state of vibration.

The body will then continue its vibration with
the frequency n’ of the external force as long as
the force acts. This is called the steady state of
vibration. In fact the energy loss against the
damping force is supplied by the system exerting
the external force. Hence the body can vibrate with
that frequency as long as the force acts.

In the steady state, the body is made to vibrate
with the frequency of the applied force. Hence it
is called forced vibration.

The amplitude of such a forced vibration is
generally small. We find that the amplitude of

forced vibration depends upon the frequency of

the applied force and on the damping factor. -
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Therefore a body, capable of
made to vibrate with any freque
that frequency is applied to it.
As amplitude of forced vibration depends on
the frequency of the forcing system,a remarkable
phenomenon occurs. This is called resonance.

[f the frequency of driving force is exactly equal

to the natural fr'equem;v of the body, the body
litude and the

begins its vibration with large amp ’
velocity or energy of vibration has the maximum
value. This special kind of forced vibration is
called velocity or energy resonance. In this
condition the vibrating system takes in maximum
energy from the forcing system.

Now we shall see how all the above conclusions
and much more follow from the differential
equations for a system under the action of a driving
simple harmonic force.

3.3.1 Differential equation of motion of forced
vibration and its solution:

First let us write down the equation of motion
for forced vibration.

There are three forces acting on the system
during its motion:

(i) restoring force —kx, (ii) damping force
_pl
F=Foso't.

. Equation of motion for the forced vibration is

vibrating, can be

and (iii) an external periodic force

il . pdx
mdtz— kx Ddt+F

Positive sign before the force F implies that
the force aids the motion. The equation is written
in a compact form as

2
dx 22 2b—d—x+—&cosw't
m

dr* dt
o 2
01', —-+2 — = I+ st S %
5 bdt+(ox feosw't 3.14
We have put
2b=D/mandf=—Fjl ................... 3.15
e .

Also we know that the natural angular frequency
il
5

This is a non-h
it iunt omogeneous second order

on. We shall solve it latter. First

ney, if a foree of

from the solution.
The general solution (x) of
terms : x =X, t X, _
(i) One term (x,) is the solution
eqn. 3.14, with the R.-H.S. equal to zep,
already seen the solution of this
equation. It is the eqn. 3.8. ’

1. = ae ™ cos Vo ~6%=8) 0 ¥

It is called the complementary function
(ii) The other term (x,) is of the form

igid

X, = ( 2 e
{((02 _w,2) +4b2(0’2}
_ 4 cos(at—o) e 3.17

It is called the particular solution. We

Fy/m

o \mwz —03’2)2 +4b2co'2} E

Here the initial phase difference is 8 givent

2bo’
-7}

. Solution of the differential eqn.3. S

x=ae’ cos(\/ o> —b%t —-5)

+Acos (C‘)’t -~ 5) ‘
Discussions : -

Existence of two terms in the soluti

that the body begins its vibration with ¥
[frequencies:

tan § = RO |

(i) the damped frequency of

o 8

(ii) the frequency of the applied .l

ny

as We have eAn ahnavra L4 Loy \':’V 4
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We multiple both sides of eqn. (i) by the /= J=1
and add it to eqn. 3.14. We get

dx

dt2 L

dzy & an DY .
CN ) fyeasct 2y + ()2
o +2bdt+l dt+(ox 0y

=fCOS(0't + ifSil'l(D't

-;—(x+ By ¥ 2bs &Gt p) T oE+ D)
= f(cosw't + i sin®'?)

We put x + iy = z and we shall use the well
known relation (cos@'t + i sinw't) = €. The above
eqn. can, therefore, be written as

This equation can be easily solved for z and
once z is found, we can easily find x, as x is the
real part of z. We like to get the steady state
solution for the vibration with frequency ®'. So,
we take the trial solution as z = z e“".

2
-4z = jw'z and d 22= -
dt dt

these in eqn.(ii), we get

®'’z. Substituting

—0'%z + 2bo'z + 0’z=f %

20
i) f
R e
(m - )+z2bw'
Now we express the denominator in the polar
form.

We put (o’ — ©"?) = a cos 8 and 2bo’ = a sin 8.
Then the denominator becomes a(cos & + i sind)
= ge® ,

where a = \/ a*cos’ 5+ a*sin 8

Using these results, we can write

z = f — f e—i8

0 aelﬁ : NE

((0 =i ) +4b% @2
Sz = i o (@1-8)

2
\/ (u)2 ~w? ) +4b%w2
= iei(m,’-s)
a

As we have seen above x = Real-
Real part of €9 is cos(ays 5).
. We can write down the particylay .

eqn. 3.14 as

=Rez= '{‘COS((O't — 8)

FO /m . ‘f"

2 3
1’(002 —co'z) +4b2w'?
— 4 cos(7 -G DT (iv)

Thus we get the desired solution, as ,,,,} o
above in eqn.3.17. -

3.4 _d Resonance ’
As resonance is very important pheno e ?

we shall discuss it again in detail. .
There are two kinds of resonance in

vibration : ’

(i) Velocity or energy resonance and i
amplitude resonance. '

i

As velocity or energy resonance is mop
significant for many applications, by resonancey

generally mean velocity or energy resonance,
A

3.4.1 Velocity resonance or Energy resor

In forced vibration velocity resonance
when velocity of the vibrating particle and
kinetic energy have the maximum values.

Displacement of forced vibration in sted
at any instant is

Since the o’ is the only variable, velo
maximum amplitude when g = '

Hence the condition of veIocltJ'
resonance is @ = @',

We have mentioned this condmon "
above, e
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t 1T Dk |
%J‘sian'tdt:O and T ‘[cos 0} tdt=§
0 0
a8
*. Average power, P =1F0msin8.
VR e 2 ma

’ ' _ I
At resonance, ® = ®', a = 2bw’ and 6 = 7 -

. Average energy delivered from the forcing

gka” - HE
system at resonance per second is P = e

This is the maximum power delivered.

3.4.4 Sharpness of resonance :

By sharpness of resonance we mean the
quality of resonance. We have seen above that as
the forced frequency o’ approaches the natural
frequency , kinetic energy of the forced vibration
increases, 1.e., the response of the system increases.
Kinetic energy has the maximum value when
o' =o.

Now the question is how rapidly the response
diminishes when o'departs from . If a slight
difference between ' and o, makes the amplitude
very small, we say the resonance is very sharp. If
on the other hand, the amplitude does not decrease
noticeably even for a large difference between '
and o, we say the resonance is flat.

Naturally when the resonance is very sharp, the
body or the system is very selective. It responds
very strongly only at a particular frequency or at
frequencies very near to a particular frequency; but
its response is very small at other frequencies. Such
systems are desirable in many occasions. Also it is
found that resonance is sharp when damping is small
and it is flat when damping is large.

InFig. 3.5, we see amplitude of forced vibration
as afunction of (' /w) for three different damping.

1/ b=50g/sq
ing)

70 g/s

In the figure you notice how apyy
as ®'— o and how the regp "
damping factor b decreases, e
We have got a qualitative ideg ghaee
of resonance. Now we shall get 5 ,
measure of the sharpness of resopg,

Natural frequency of the system is «
the resonant frequency, where the ;
of forced vibration has the maximyp
Now suppose that at frequencies

(0,<o< o, the power reduces to

exactly to half its maximum valye,

L oot ,
Ll - [
2 ' :
o, o
Fig. 3.6

The two frequencies ®, and @, are ce
power frequencies and the difference (¢
called the band-width. £

Sharpness of resonance is measu
quantity called quality factor Q, defined

iy Mol -
s 3.24

If band-width is small, a slight deviatio
frequency from the resonant freque
produces a sharp drop in response. Therefor
is the band-width (¢, - ®,), larger is t
factor and the sharpness of resonance, see

It is quite expected that quality factor ¢
vibrating system should depend on the co
that characterise the system. To !
dependence, let us find the values of ®’ fc
the power of the vibrating system is exac
to half the maximum value, i.e., i

Y
Pav— 2 P ..........................
2
e have’ Pav =% 0% sin 6,
F02 ma :
p =l B by  Fia’
“ 2 ma a 2
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The above cond:tion (1) would be satisfied if

2 2
Fob_1 L
e

or, (0¥ = o) +4b’w"” = 8hn"”?
or, (02 — @7 =4ba”

or, 0 — @7 =+2ba'

or, @7 £2b0'—a® =0

Solutions of the equation are given by

b+ V42 +4w>
w':izf——-—z——ﬂa-bi'/bzﬂ,)z

Since frequency must be positive, we must
choose the two positive solutions only.

.. ®,and ,are givenby ®, =-b+ /bz g

ando,=b+ yb* + o -

Low,-0 =2b

-, Quality factor, O = ﬁ:%:ﬁ& :

We see that O is decided by the damping factor
(b), force constant (k) and mass (m) of the vibrating
system.

Product of the half-power frequencies is given
by(olm2=b2+w2—b3 =0 .

345 Examples of forced vibration and
resonance :
Forced vibration and resonance aré very

important phenomena, useful and interesting, Let
us see some examples.

(A) Mechanical Example

We shall first describe the Barton’s experiment,

which gives a very good illustration of forced
vibration and resonance.

D A A
E pote
' Fig. 3.7
InFig.3.7, A is heavy metal ball suspended from

a thick rubber cord. B, C, D, E and F are also
pendulum of different lengths having very light

57
bobs; these may be paper cones. Now A is set into

vibration in a direction perpendicular to length of
the cord. It is observed that all the pendulums

except D, begin their vibrations erratically and

ultimately continue vibrating with the time period

equal to that of A. But the amplitudes of their

vibrations are small. Hence these are examples of
forced vibrations as we described above. But the
vibration of D, whose length is kept exactly equal
to the length of A behaves differently. It picks up
the vibration almost immediately and its amplitude
grows to a fairly large value. Hence resonance
occurs for D.

A very common example of resonance is a child
enjoying a swing. If the periodic impulses applied
to the swing agrees with the natural frequency of
the swing, large amplitude can be attained.
Resonance occurs.

If you look around you will see many
examples of resonance. The various parts motor
car, such as a flexibly mounted engine, brake
rods, gear lever etc., have their own natural
frequency of vibration. The periodic motion of
the pistons communicates to them a forcing
frequency proportional to the speed of the car.
As the speed of the car alters, the frequency of
the pistons may match the natural frequency of
some part so that it is thrown into resonant
vibration and rattles vigorously.

Resonant vibration is of considerable practical
importance to structural and mechanical engineers.
If quite a small periodic force operates on some
structure or machine having the same natural
frequency, vibrations of large magnitude develop.
Vibrations produce stresses and, for large
magnitudes, the resultant stresses may exceed th
elastic limit and damage the structure. Hence 1
designing a structure it is necessary to examin
what external periodic forces may act on th
structure. The structure is then built up so as t
have a different natural frequency. Great care |
taken to make sure that none of the natur:
frequencies 1n which a wing of an aircraﬁ ce
oscillate match the frequency of the engint
flight. In earth quake seismic Waves produ
vibrations and those structures are complete
destroyed, whose natural frequencies match t
frequencies of those waves. '
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(B) Acoustical Example

When a vibrating tuning fork is held in the hand
a feeble sound is heard. But if we press its stem on
a table-top the sound is greatly magnified. In fact
the table is now thrown into forced vibration with
the frequency of the fork. A large mass of air in
contact with the table is now set into vibration and
as a result the volume of the sound increases. But
now the rate of loss of energy from the fork is
high and so it stops vibrating after a short time,

In string instruments like sitar, esraj, guitar, etc.,
strings are stretched on a thin wooden board. The
vibration of string produces forced vibration of
the board and thence of air. This intensifies the
emitted sound.

Many of these instruments have several strings
tuned to different notes. When a tune is sounded
on the principal wire, resonant vibrations are
excited in the strings tuned to the same note. This
increases both the intensity and the pleasantness
of the tune played. In ‘percussion’ instruments, like
drums, the intensity of the sound is increased by
the forced vibration of the air inside them.

Loudspeakers of pure quality sometimes give
a magnified response to certain parts of the musical
scale because of such resonance. The result is
bloomy reproduction.

A glass with low damping can be broken by an
intense sound wave at a frequency equal to or very
nearly equal to the natural frequency of vibration
of the glass.

(C) Electromagnetic Example

Reception of radio signal is brought about by
resonance. The frequency of the receiver set is
adjusted to that of the radio wave coming from a
particular station. Hence only that wave produces
large response in the receiver.

3.5 _d Fourier Analysis

We shall first state Fourier’s theorem and apply
it two problems and then we shall discuss its deep
significance.

Statement: Any single-valued, periodic
function, which is continuous or has a finite
number of finite discontinuities in a period, may
be expressed as a sum of simple harmonic terms,
havmg frequencies which are multiples of the
Trequency of the given fiunction.

Let y =/1t) be a periodic functiop oy o
time period is 7°and angular fr i

S S0 = f(t+T). According to FOurier’; :
we can write E0r,

‘3

T i
Y =)= 75 a,+ a, cosot + a, co gy 4 3

3ot + ...+ b sinot + b, sin2mt + b, sin3 :‘:

. - = aO ¥
L y=flt)= ——2—+Z(a,, COSMO +b, S pagh

n=

-----

Thus the function is expanded into an g .
series involving sines and cosines. The mipin.
frequency is the frequency of the given pepins
function and others are integral multiples of g
minimum frequency. The minimum frequeney «
called fundamental frequency and other g
harmonics. i

Here a’s and b’s are constants, called Fourjers
coefficients, whose values depend on nature of fhe
given periodic function. We are to find their vajyes

Physically the theorem implies that a

Ay
periodic motion can be analysed into a large
number of simple harmonic motions of appropriate
frequencies (®,) and amplitudes (a,.b) a _--"fl
conversely any periodic function can be
synthesized by adding(superposing) those 'r
harmonic components.

The process of decomposition of a ._’:
function into its simple harmonic components is
called Fourier analysis. E

To find the values of the Fourier coe iw s

we have to use the following three integrals:
7 T )

(1) I sin not dt = I cosnwtdt =0 A}

0 0

w' s
4=

T B

T
(2) I oS nwt cos mwt dt = I s
; 0 B
=0, if m#n
G E
y ifm=n
2 .

(3) I $in nwt cos mot dr = ().

0
Let us calculate two of the above integrals.

z

r L o
J‘sm not dt = _[cosnﬂt] -
0 new . Jo i
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s o, 30, So,..... W
The Fourier’s coefficients are to be evaluated ﬁ:’:{l};‘gﬁf‘:: are preseal 2
using the above formulas. We hav: Tho more and morea
. & ld be the sum to the
2 - and nearer wou . he
&GS %If (1)t =5 '[ adt j adt The amplitude of a given term |
0 T/2 o m
) o[ & weight or contribution of that tery
it T[a‘f—a—i]_ In Fig. 3.9(a) we see the

to the first three terms of the

T d also their sum. In F

z separately an . In |

& =ij(t)cosnmt f see the curve obtained by summin
0 ] terms. We should be convinced th

T/2 T .
l’: _[ acosnot dt — Iacosnwtdt statement is true.

A o
0 T/2 AT
2 T2 r S Wb':ve .
a 1 3 ’ e 2
& 7%[[8"1 no)t]0 ~[sin nwt]T /2] o k! e
e X I/'" 3 I/’ 1,'_ ’—.l): :
= i[[sin nm —sin 0] - [sin 2n7 —sin mt]] =0 B e R
L b Eaes 4
T \\\ 4_'
b, =%If(t)sinnwtdt ] - A
OT (a) Addition of three terms
o) 7.
i % Iasinnmtdt— I asinnot dt
0 T/2 :
2 a [ T/2 T J ] "IN
= =2 | —[cosnmt +[cos not
T no [ ]0 [ ]T/Z -.\F
= AT _[cosnm—cos0]+[cos 2nm — cos nn] |
nx (b) Addition of fifteen terms
If n is even number, cosnnt = 1 = cos2nm . Fig. 3.9 i
ﬁ'l
b, =0 We also notice that addition of 101
If n is odd number, cosnmt =— 1, cos2nn = 1. harmonics changes the sha pe of th
g function and ultimately we get back
S curve, &E -
Fourier’s series is oy
(2) Saw tooth Wave e

In Fig.3.10a,we see a saw f ot
function increases linearly from 0 to
P F(t)A Vi
b, =0 for all even values of n. b = i forallodd

. .

00
1)) = % + D (a, cosnot +b, sinnor)
n=l

In this case ;= 0, a = 0, for all values of n.

values of .
Substituting these values of the constants in the
Fourier’s series we get
Hil= %(sin(ot o %sin3(ot +%sin St + )
................... 3.29 2
We have been able to express the given periodic Fig. 3.10(a)
function as the sum of a series of simple harmonic then drops sharply to zero, Th i
functions having different amplitudes and angular It1s a periodic function, time p
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We first study the structure of the different
musical sound that we hear.

Sound of a single frequency is called a pure tone
or simply a tone. It is produced by a tuning fork or
electronic tuner circuit. Therefore, sound from a
tuning fork or electronic tuner circuit 1 a pure tone;
it is monotonous and boring. As it has almosta single
frequency, it is a harmonic wave. If the frequency
of a pure tone is exactly double that of another, then
the tone of higher frequency is called the ocrave of
the tone of the lower frequency.

The sound that we hear from different sources
has many frequencies. In fact, harmonic waves of
many different frequencies superpose with
different amplitudes and phases and the resultant
wave is what we hear. Addition of these tones
changes the wave envelope or wave profile, as we
have seen in Fourier analysis above. The resultant
wave is no longer harmonic but periodic; sound
of such a wave is called a note.

Of all these different frequencies or the tones in
a note, the one that has the minimum frequency 1s
called the fundamental tone or simply fundamental
or first harmonic. All the other tones whose
frequencies are bigger than the fundamental tone
are called the overtones. Those overtones whose
frequencies are integral multiple of the fundamental
tone are called harmonics. So when we hear a note,
we hear the fundamental and the harmonics and
other overtones all blended together.

Now we are in a position to study the
characteristics of musical sound.

Musical sound has #hree essential characteristics :
(1) Loudness, (2) Pitch, (3) Quality or timbre.

If two musical sounds has all the above three
characteristics same, then there is nothing to
distinguish one from the other. All these three
characteristics are judged by sensations they
produce, and to some extent interdependent. Also
it varigs to some extent from person to person.
But still e‘acb of these is largely governed by one
or more distinct physical factors. We are going to

study the physical causes on which these
characteristics depend.

g.) Loudness : 1t is a sensation that depends
z:it ; ampunt of energy falling per unit area in
/e n our ear; greater the energy louder is

A HAND BOOK OF pEg

the sound. Obviously loudness is rela
intensity of the wave. Intensity “'M
is the flow of energy normally w
per unit time. i
Loudness increases with mty,
proportional to the intensity. Moreover
intensity at widely different freque
produce sensations of different loudness,
like emphasize that loudness of sound is 4
sensation and a physiological pheng
Intensity, on the other hand, is a physical quzp,
and is the main external cause for the sensatig

Joudness. R
Naturally loudness depends on the i
factors on which intensity depends. In ck

wave. We got %8
[ = 2n*pen’a’ o
We see that intensity (/) of a harmonic g

depends on the density (p) of the medium, spes

(), frequency (1) and amplitude (a) of the soung
Other factors on which intensity depends f-:
(i) The size of the source, greater the size

greater is the loudness. The reason is that o

of greater size can produce vibration of greate

mass of the medium surrounding it, pi oduci
bigger disturbances. '

(ii) The distance (r) of the source x
observer. The relation can easily be fo
follows: Let S be a small source emitting ene

Q per second. When it travels a distance r from

the energy is spread over the surface of a spl

of radius » with S at its centre, 9
.. Energy passing per unit area per i

radially (i.e., normally) at a distance 7 fron

source is the intensity given by :

I= Q2 L
4ntr r

(iii) Presence of other bodies near
have seen that when a tuning fork is pr

e

N)—

wooden box in string instruments €!
intensity, both because of forced v
there is body which resonates with- h
f’f the sound there is a marked i
intensity. T
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thresholds A and B respectively for different
frequencies. Also we see from the figure that our
ear is most sensitive around 3 kHz.

Pressure amplitude (p,) of sound wave can be
measured. From this data we can calculate the
displacement amplitude (a)and intensity (/) by the
relations p, = 2mancp [ see eqn.2.7] and [ =
2iain’pe [see eqn.2.15]. We can take p = 1.29
kgm*and ¢ =345 ms .

Now we quote some data for sound waves of
frequency 400Hz.

The faintest sound of this frequency that can
be heard has pressure amplitude, (p,), = 8 * 107
Nm 2, displacement amplitude a, = 7.15 X 10"'m
and intensity 7, = 7.19 x 10> Wm*Notice a, is
of the order of molecular dimensions and is much
smaller than the average molecular separation in
a gas. From these data we can realise the
remarkable sensitivity of our ears.

The loudest sound of this frequency that
produces sensation of pain or discomfort in our
ears has (p), =30 Nm?, a,= 1~ 2 mm and
I, = 1 Wm 2 We know normal atmospheric pressure
is 1.013 x 10° Nm™2.

Now we can see the enormous range of
displacement and pressure amplitudes and
intensity over which our ears can respond. No man-
made apparatus can cover such a wide range.

3.7.1 Intensity and loudness :

We have seen above that perception of loudness
is not proportional to intensity of the sound.
Loudness is found to vary as the logarithm of the
intensity.

The connection between loudness (intensity of
sensation) and Intensity of sound (physical
stimulus) was first investigated by Weber.

Weber-Fechner law :

Weber found that if the intensity of sound is I
and Al is the increase in intensity which gives a
Just perceptible increase in loudness AS, then

Al X
AS = kT’ where k is a constant.

Fechner took the relation in this form and
a»ssumed that‘ AS and Al as true differentials,
Therefore by integration we getS=klog I

This is known as the Weber-Fechner law. This
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law holds approximately not only fo,
of loudness, for all sensations, lik
intensity of light, etc,. |
3.7.2 Intensity level, bel and deci 3

From Weber-Fechner law we de ;
Jevel of a sound and its unit. "o i

For this purpose we take the con; -
the logarithms are taken to base ten:

In perception of sound, relative
more important than absolute values of i

Hence intensity (/) is generally me:
ratio to a standard minimum intensity

If loudness for intensities / and I
respectively, then we have

S =log,, [ and S, = log, 1, |

Intensity level (L) of the sound of in
by definition, e

1.2

wi

he

i A

7
L=S-8,=log, Tk
Hence intensity level, L = (S — §)
much the loudness of a given sound
standard minimum value (reference i

The standard minimum intensity
chosen to be I, = 10> watts / m* I
intensity that can just be heard at freque
Our ears are very sensitive at this fr
name given to this unit of intensity I
Notice, it is dimensionless. '

!

Therefore intensity level L of sous

Iis
b= loglo(IL) bel. ...l tE. ,
0 :
Suppose intensity of a sound is I
its intensity level is B 5 -

; 107, Y=
« otog{ £ - togo| Tk

~. Intensity level of a sound is 1
ten times the threshold intensity /.

The unit in common use is Decib
b

= 0.1 bel.
- Intensity level of a sound v
decibel is given by R
P sl
B = 10log,, 71; dB .88
If intensity level of a soun&
from eqn. 3.33 A
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To get the relation between sone and phon,
we observe that when loudness is 50 phon, we
first subtract 40 from 50, and then divide the
difference by 10. We get 1, then the loudness in
sone i1s 2'= 2,

Therefore if loudness of a sound has values P
phons and S sones in the two units, then relation

£-40
between these two can be written as § = 2 10

3.7.5 Musical Scale :

In music absolute values of the frequencies of
the notes are not important. In passing from one
note to another, our ears are sensitive to the ratio
in which their frequencies change, not to their
numerical difference. A doubling from 100 Hz to
200 Hz sounds similar to a doubling from 800 Hz
to 1,600 Hz.

Musical interval : The ratio of frequencies of
any two notes is known as the musical interval
between them.

Notes of the same frequency are said to be in
unison. If the ratio of two notes is 2/1, the interval
between the two notes is called octave, whatever
be their actual frequencies. Therefore interval

between 100 Hz and 200 Hz or between 1000 Hz
and 2000 Hz is an octave.

Similarly, interval is called fifih, Jourth, major
third and minor third if the ratio is 3 / 2,47 3557
4 and 6/ 5 respectively.

Consonance and Dissonance :

When two or more notes are sounded together,
their combination is called a chord. If the
combination produces musically pleasing
sensation to the ears, the two are called concord.
The pleasant effect is called consonance. If the
combination produces musically disagreeable or
Jarring effect upon the ears, it is called a discord
and the disagreeable effect is called dissonance.

When two notes which produce concord are

sounded together, the pleasing effect is called

harmony. When they are sounded one after the
other, the effect is calleq melody. Whether it is
melody or hannony, two notes produce pleasant
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effect if the ratio of their frequm:._
expressed as fraction of smal] T: an
is the integer the more pleasing jg the ;,'

In other words, the musical in‘m'al; s
perceived to be most consonant are oM
small integer ratios of frequency, Sue
known as “just”. Four intervals are partje,, &
important: the octave (2/1), a just fifth (312), 42
fourth (4/3), and a just major third (5/4),

Fig .

The reason behind the dissonance ig ;
of beats. When two notes are produced ¢,
beats are formed between the fungyy
frequencies or between the overtones, This bregy.
up the resultant sound into pulses, which py A
the irritation in our ears. Flickering of Fiat.
produces similar unpleasant sensationg in oy
eyes.The range over which the dis .
the beats persists is different for diffe;ﬁ?‘
frequencies. : ?

Musical scale : A musical scale, a ser of notes.
with consonant intervals,is used to make %
Musical scales are defined in terms of the
Jrequency ratio of each note to a reference piteh,
called the root or keynote of the scale.

Diatonic scale : 1t is a musical scale formed
by introducing six notes between a given note
its octave. Thus the octave is divided into
intervals. The notes are so chosen that these are
consonant among themselves and with the extreme
notes of the octave. :

The eight notes are indicated by the letters: ¢,
D,E,F,G, A, B,c. Frequency of ¢ is twice tha
C, hence note ¢ is an octave higher than keyr
C.In music, several such octaves extendingonb
sides of the keynotes are required. For ¢
for the next higher octave ¢ would be firstm
and the last member ¢’ is an octave higher
and two octaves higher than C,

In Table -I1 below, we can see the name
successive notes, their relative frequen
Intervals between successive notes. Here

is chosen as 256 Hz, but it can have any
value. £
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3.8 . Acoustics of buildings K

Acoustic of building or nrchitcctural‘acgus.uc:
deals with the design and construction of b'ulldn‘lf-
and rooms to produce an ideal situation.ol hct;:‘l tﬁ
experience.In buildings mainly noises, 0 :
mternal and external, should be reduced ?(
minimum. In closed rooms, in purlicm‘nlur in
different auditoriums, there are different klpds of
disturbances, which are to be reduced to mimmum:
Hence behaviours of sound wave in closed spaces
are also studied in this discipline.

Here we are concerned with some of-thc
disturbances we experience when there 15 musical
performance or lecture in a closed room and how
to minimise them.

Most important acoustical defect of an
auditorium is reverberation. We shall consider 1t a
little detail.

3.8.1 Reverberation :

When a sound is produced in a closed room,
sound waves are reflected back from the walls,
floor and ceiling. If absorption of sound by the
different surfaces is small,the waves are reflected
back and forth from one surface to another. As a
result of such multiple reflections, the effect of
the sound may persist for a long time after it is
produced. The fresh sound produced during this
time is blended with the former and the two cannot
be distinguished; clarity is lost. This defect is
particularly important in a lecture theatre.

This prolongationor persistence of audible
sound even after the source has ceased to produce
sound is called reverberation.

Naturally this effect can be reduced to a great
extent by using suitable absorbing materials in
different reflecting surfaces.

The level of reverberation in a hall is measured

by reverberation time. It was first introduced by
W.C. Sabine.

3.8.2 Reverberation time -

Itis defined as the time (7) required for a sound
to diminish from its initial intensity (/) to one-
millionth of that intensity, :

Ifafter time 7'the intensity / reduces to 7, then
from the definition, we have !l=10‘6

Sa0b . i3 l
Initial intensity level in decibel wag

L
B, = 10log,, Iy Jro s

After time T, intensity drop,

2
B, = 10log,, gn

- Drop in intensity level in

L} .
B, B, = 10(10810(7#}“

1 %
' lmog"’[TLJ = 10log, 106 -
2 5

Hence in reverberation time intenes
by 60 dB. Change in decibel level j5_ ¢

Therefore if the initial level was g
sound level after the reverberatj
cease to be audible.

Reverberation has both disady;
advantage :

If reverberation time is large, soy
for a long time. As a result, there is oy
sounds of two syllables uttered in g
which produces confusion. The 2 u__"’
will be bad.In a lecture theatre, in partic
reverberation time is preferred. :

On the other hand, if the reverberag
too small, any sound produced w
and the sound becomes unplea
speaker also misses the power wh
reverberation gives him; he must
to produce the same loudness. A roon
reverberation time is called a dead ro

For musical performance in cones
the right reverberation time is to t
example, if the music depends for if
precision of detail, a short time of
to be preferred. For music whose
ON massiveness and power, a long
reverberation is required. In fact rig
revereration can drastically en
q“?llty, when a musical symp ho
being played in a hall. .

Opti‘mum reverbemﬁon tn
and 2s for music.Hence the req

time for 4 roo 'ds on
. m depends on
Intended for. 5
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which are multiples of the frequency .
function.

Physical implication i
simple harmonic motions of correc’
and amplitudes can produce any pero 50
however complicated it may be. Siml‘)leiha fion.
motions are the building blocks of periodic mo y

Tone : Sound of a single frequency is calleda 10" d

Musical sound or note: It is the sound Produclzr
by continuous vibration having a regt es
periodicity. Generally such a sound produc y
pleasing sensation. All musical sounds contall
many tones.

Three characteristics of musica
loudness, pitch and quality or timbre. )

Though these three are essentially sensations
and to some extent interdependent, they
individually depend on several physical factors-

Loudness depends on intensity and sometimes
on frequency of the sound wave. Loudness 1s not

proportional to intensity.

Pitch is the characteristic by which we
distinguish a shrill sound from a dull one. It 18
determined by the fundamental tone (minimum
frequency) present in a sound. Pitch is almost
proportional to the fundamental frequency, but
overtone structure and intensity affect pitch.

Quality is the characteristic by which we can
distinguish sounds of the same loudness and pitch
coming from different sources. Quality is mainly
decided by the overtones and harmonics present
in a sound and their relative intensities.

Range of frequency we can hear: For normal
human ear: From 20 Hz to 20,000 Hz.

Threshold of audibility: It is the minimum
intensity for a sound to be just audible.

giVCn

ot frequencics

dic motiOﬂa
nic

| sound:

Threshold of feeling: It is the minimum
intensity above which the character of the
sensation changes and becomes one of pain or
discomfort in our ears.

Both these two limits depend on the pitch of
the sound.

Ratio of these two extreme intensities is very
large: at frequency 1 kHz the ratio ig 10 : 1 and

at frequency 80 kHz it is ] () - -
enormous. 11810° 1. The range is indeed

PR Of
s that superposntlon

2

A HAND BOOK,

weber-Fechner law: L¢

logarithm of the intensity T

[ntensity le\‘lel of a soung 4
intensity level is -
l ¢ i

L=8-57% klog, To.] B

1, is the intensity of a standzr,

Bel and decibel : In this -1’;_

is chosen 10 be 1,= 10" wagtg

and logarithms are taken to bas
in bel unit i defined as

L=1log ’11; bel. 3

The unit in COMMON use is ﬁ'--‘i'
= (.1bel. b
In decibel unit intensity leye]
intensity / is .

B =10 log,, i w
Intensity level of the thresholg

y Jo )8

Intensity level of the threshola

| -
10 logm(lo_lz)— 120 dB.

Thus 0 dB to 120 dB is the ¥
sound intensity level that we can
Unit of loudness : Inte
levels are measurable qua:
independent of human perc

Loudness, on the other
experience of the sound. In
same decibel level but of
appear to have different lou
Therefore loudness should |
which may take into accou
loudness on frequency. Ph
loudness. To define it we

of sound of frequency 1 k!
Loudness of a sound
has the same loudness
frequency 1 kz having i
But the new unit pho
because in this we do not
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ina 2Ty _bx23_23
Agamk:T S 00

v er sec.
560 0.01 p g

If we take correction for damping the firs
deflection should be (see text)

. Damping factor, b =

g, z:}-‘ : 5 8 m.
.x'=x|(|+%.)u--o,5 x (l f 5 200) 0.502 ‘
4. A tning fork of frequency 300 Hz I:(Ls"qualll);
Jactor 5 x 10*. Calculate the time mlerv.a
after which its energy reduces to 1/ 10 of its

initial energy.
Quality factor, Q = 2%
b=2mn_ 21x300 (0188 per sec. Ifinitial
20 2x5x10*
energy is £, energy reduces to £, given by
E=E e Given E = UAE, " e =l
Inl0 In10
" 26 2xo00188 0123s

5. A sound is twice as intense as another. What
is the difference in intensity levels of the two?

[ANS) Intensity levels of the two are B =

[ 27
IOlogm(EJ dB and B, = 10]ogw[10j dB.
. Difference in intensity level is
B.=B,= 10[(log,2+log,, 1 —log,, 1)

- (logml - logwIO)]
= 10log, 2 = 3 dB (nearly).

6. Imagine a point source of sound emitting
constant sound power. By how many dB does
the sound intensity level drop if you move
twice as far away from the source?

As spherical wave emerges from the point
source, intensity falls off as the square of distance.
Therefore ratio of intensities at distance r and 2r is

2
]1 (27') =

——

Iy 42
. Difference in intensity ratio in dB is

o 03 I
Bz~~[3,~-1010glo % ~10log,, =

0
peath 53
= 10log,, (.

= 10log,(1/4) = -6.0 dB
Intensity level decreases by 6 dB.

A HAND BOOK OF peg,
7. Intensity level in rock myg;,
reaches 120 dB. Intensity ey,
speech is typically 60 dB. Fing
actual intensity of rock mugje g s
speech. o
Difference in intensity leve] jg

1) 1000 (00
Bp=Bs™ I()log,o(—l—(—)-) 1010310('1‘1)

0

I .
= 10log,, '[;’ |

= IR F
. 120 - 60 = 60 = 10log, (E]"If" ;

S

Intensity of rock music can be il a
greater than that of ordinary speech,
8. Intensity level in a noisy room is 100 J/;

is the intensity in watts per cubic -y :
If I be the intensity, intensity leve] i

/
B =100 = 10log,,| 7~ .

)

+ L _1010. We know I, = 102 wattm
Iy

S I=102W/m?, 3
9. There are two independent sound s :
which are individually 90 dB and 100 i
Which is the loudness when they are b
sounded together ?

[ANS] 1t is certainly not 190 dB. We k ,
relation for sound level of intensity / in dB uni

B=10l0g, L. - 7= 10M0, |
; :
Therefore intensities of the two sc unds 2
K =.10109 and 7, =110 . As the two sour
are incoherent, i.e., neither the two are ¢

nor have the same frequency, then the-
ntensity / is the sum of the individual

i
[=1,+ 1= 11410100 = 1.
*. Loudness of the resultant sound is

N

e

B= longI‘o = Ing(l.l x 1019) = 3

10. 4 sound of frequency 3000 Hz w
level of 70 qg produces the
as a standard soyrce of freq
4t a intensity level 67 4B, Fi

level of the Sound in phons. '
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21

22,
23.

24,
25.
26.

27.

28.

29.
30.

31.

32,

33.

35.

1.

. Prove that the product 0

¢ two half-power

A sonant
frequencies is equal to the square of the res@

frequency.

Explain how different properties of
affect its quality factor?

State Fourier's theorem and express
mathematical terms. E
What is physical implication of Fourier’s theorem”
What is Fourier analysis?

A square wave is described as f
satisfying the conditions :
f(n=+afromt=0tot =772
fi)=-afrome=T2t0 t=T.
Analyse the function by Fourier’s theorem and
express in terms of its Fourier’s components.

A saw tooth wave is shown in Fig. 3.10a Expand
the function into a Fourier’s series.

(i) What is the difference between loudness and
intensity of sound?

(i) Which factors intensity of sound depends
upon?

(iii) What are the two thresholds of intensity for
human ear?

(iv) Give an approximate idea of the range of
intensity of sound over which our ears can hear.
Does this range depends on anything else?

What are tone and note?

What is pitch of a note? Which physical factors it
depends upon?

What is quality or timbre of a musical sound? How
quality of a sound may change without changing
its pitch?

How loudness depends on intensity of sound? State

the Weber-Fechner law. Is this law applicable to
perception of sound only?

What is intensity level of sound? Define bel and
decibel.

a forced system

it in

unction ()

. If intensity level of a sound is 1 bel, why its

intensity is ten times the threshold intensity?

Intensity level ofa sound is 1 dB. How much higher
Is its intensity above the threshold intensity?

NUMERICAL PROBEM

36.

37.

38.

39.

40.

41.

42.

43.

45.

46.
47.
48.
49.

50.

51.
52.
53.

54,

55.
56.
§7.

58.

_ When interval between the tw

A HAND BOOK OF -
what is the whole range of |
in dB unit? N k.

efine phon. Why it is more appe
le)nit for loudness of sound?

The decibel scale 1s an obj
sound; the phon scale is more s

- t. .
the statemen & 5
Define sone. Why it is more appropy
as a unit for Joudness of sound? ;
What is the relation by which we "';-l' 3
to sone and vice versa? E
In our perception of variation
our ears are sensitive to what? ]
Why numerical differences of f o
jmportant when we hear music?

What is musical interval between twg
it is sO important? Explain by e

octave? When these are said to!
What are consonance and dissonz
of musical sound?
When do two notes produce ple _‘.,:{
What is the reason behind the n
What is musical scale? -
What is diatonic scale? Why it represe
harmonic perfection? What is i

What is tempered scale? What is its adv
diatonic scale? 3

What are acoustic of building cor Gt
What is reverberation? Define re

Explain why reverberation has
and advantage.

Define absorption coefficient.
s regarded as perfect absorber
much a listener a room absorbs

State Sabine formula.
Give a simple derivation of Sabin

Briefly discuss the requiremen

in a hall and auditorium a
achieved?

Briefly discuss how rev erbemﬁ] o

A spﬁ_ngf-m'gss oscillator has force constant 4.72
N/m and mass 0.93 kg. What must be the period
of a simple harmonic driving force if it is (o
excite resonance? [Ans. 2.79 §)

2.

Caleulate the change i j

intensity of sound incre
intensity,
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