19.1 INTRODUCTION

Thermal property refers to the response of a material to the application of heat. As
a solid absorbs energy in the form of heat, its temperature rises and its dimensions
increase. The energy may be transported to cooler regions of the specimen if tem-
perature gradients exist, and ultimately, the specimen may melt. Heat capacity, ther-
mal expansion, and thermal conductivity are properties that are often critical in the
practical utilization of solids.

19.2 HEAT CAPACITY

heat capacity

Definition of heat
capacity—ratio of
energy change
(energy pained or
lost) and the
resulting
temperature change

specific heat
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A solid material, when heated, experiences an increase in temperature signifying
that some energy has been absorbed. Heat capacity is a property that is indicative
of a material’s ability to absorb heat from the external surroundings; it represents
the amount of energy required to produce a unit temperature rise. In mathemati-
cal terms, the heat capacity C is expressed as follows:

dQ

C=qar

(19.1)

where dQ is the energy required to produce a 4T temperature change. Ordinarily, heat
capacity is specified per mole of material (e.g., J/mol-K, or cal/mol-K). Specific heat
(often denoted by a lowercase ¢) is sometimes used; this represents the heat capacity
per unit mass and has various units (J/kg-K, cal/g-K, Btw/lb,, - °F).

Scanned with CamScanner



Figure 19.1
Schematic
representation of the
generation of lattice
waves in a crystal by
means of atomic
vibrations. (Adapted
from “The Thermal
Properties of
Materials™ by

I. Ziman. Copyright
© 1967 by Scientific
American, Inc. All
rights reserved.)
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There are really two ways in which this property may be measured, according
to the environmental conditions accompanying the transfer of heat. One is the heat
capacity while maintaining the specimen volume constant, C,; the other is for con-
stant external pressure, which is denoted C,. The magnitude of C, is almost always
greater than C,; however, this difference is very slight for most solid matenals at
room temperature and below.

Vibrational Heat Capacity

In most solids the principal mode of thermal energy assimilation is by the increase
in vibrational energy of the atoms. Again, atoms in solid materials are constantly
vibrating at very high frequencies and with relatively small amplitudes. Rather than
being independent of one another, the vibrations of adjacent atoms are coupled by
virtue of the atomic bonding. These vibrations are coordinated in such a way that
traveling lattice waves are produced, a phenomenon represented in Figure 19.1.
These may be thought of as elastic waves or simply sound waves, having short wave-
lengths and very high frequencies, which propagate through the crystal at the ve-
locity of sound. The vibrational thermal energy for a material consists of a series of
these elastic waves, which have a range of distributions and frequencies. Only cer-
tain energy values are allowed (the energy is said to be quantized), and a single
quantum of vibrational energy is called a phonon. (A phonon is analogous to the
quantum of electromagnetic radiation, the photon.) On occasion, the vibrational
waves themselves are termed phonons.

The thermal scattering of free electrons during electronic conduction (Section
18.7) is by these vibrational waves, and these elastic waves also participate in the
transport of energy during thermal conduction (see Section 19.4).

Scanned with CamScanner



784 - Chapter 19 | Thermal Properties

Dependence of heat
capacity (at constant
volume) on
temperature, at

low temperatures
(near 0 K)

3R Figure 19.2 The temperature
dependence of the heat capacity at
constant volume; f, is the Debye
temperature.

Heat capacity, C,,
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Temperature Dependence of the Heat Capacity

The variation with temperature of the vibrational contribution to the heat capacity
at constant volume for many relatively simple crystalline solids is shown in
Figure 19.2. The C, is zero at 0 K, but it rises rapidly with temperature; this cor-
responds to an increased ability of the lattice waves to enhance their average en-
ergy with ascending temperature. At low temperatures the relationship between
C, and the absolute temperature T is

Cr=ATE (19.2)

where A is a temperature-independent constant. Above what is called the Debye tem-
perature 6p, C, levels off and becomes essentially independent of temperature at a value
of approximately 3R, R being the gas constant. Thus, even though the total energy of
the material is increasing with temperature, the quantity of energy required to produce
a one-degree temperature change is constant. The value of 8y is below room temper-
ature for many solid materials, and 25 J/mol-K is a reasonable room-temperature
approximation for C,. Table 19.1 presents experimental specific heats for a number of
materials; ¢, values for still more materials are tabulated in Table B.8 of Appendix B.

Other Heat Capacity Contributions

Other energy-absorptive mechanisms also exist that can add to the total heat
capacity of a solid. In most instances, however, these are minor relative to the
magnitude of the vibrational contribution. There is an electronic contribution in
that electrons absorb energy by increasing their kinetic energy. However, this is
possible only for free electrons—those that have been excited from filled states
to empty states above the Fermi energy (Section 18.6). In metals, only electrons
at states near the Fermi energy are capable of such transitions, and these repre-
sent only a very small fraction of the total number. An even smaller proportion
of electrons experiences excitations in insulating and semiconducting materials.
Hence, this electronic contribution is ordinarily insignificant, except at temper-
atures near 0 K.

Furthermore, in some materials other energy-absorptive processes occur at spe-
cific temperatures—for example, the randomization of electron spins in a ferro-
magnetic material as it is heated through its Curie temperature. A large spike is
produced on the heat-capacity-versus-temperature curve at the temperature of this
transformation.
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19.3 Thermal Expansion

Table 19.1 Tabulation of the Thermal Properties for a Variety of Materials

785

c o k L

Material (J/kg{,-K)" [(co™ % 10751 (W/m-K)* [Q-W/(K)® x 107Y]
Metals
Aluminum 900 23.6 247 2.20
Copper 386 17.0 398 2.25
Gold 128 14.2 315 2.50
Iron 448 11.8 80 2.71
Nickel 443 13.3 90 2.08
Silver 235 19.7 428 2.13
Tungsten 138 45 178 3.20
1025 Steel 486 12.0 51.9 —
316 Stainless steel 502 16.0 15.9 —
Brass (70Cu-30Zn) 375 200 120 —
Kovar (54Fe-29Ni-17Co) 460 5.1 17 2.80
Invar (64Fe—36Ni) 500 L6 10 2.75
Super Invar (63Fe-32Ni—5Co) 500 0.72 10 2.68
Ceramics
Alumina (AL0O,) 775 7.6 39 —
Magnesia (MgO) 940 13.54 37.7 —
Spinel (MgAl,0;) 790 7.6% 15.0° —
Fused silica (§8i0;) 740 0.4 1.4 —
Soda-lime glass 840 9.0 1.7 —
Borosilicate (Pyrex) glass 850 33 14 —
Polymers
Polyethylene (high density) 1850 106-198 0.46-0.50 —
Polypropylene 1925 145-180 0.12 —
Polystyrene 1170 90-150 0.13 —
Polytetrafluoroethylene 1050 126-216 0.25 —
(Teflon)
Phenol-formaldehyde, 15901760 122 0.15 —
phenolic

Nylon 6.6 1670 144 0.24 —
Polyisoprene — 220 0.14 —

“To convert to cal/g: K, multiply by 2.39 X 10™% to convert to Btw/lb,, -°F, multiply by 2.39 X 107*.,

bTo convert to (°F)~!, multiply by 0.56.
To convert to cal/s -cm -K, multiply by 2.39 X 1073, to convert to Btw/ft - h -°F, multiply by 0.578.

4 Value measured at 100°C.

“Mean value taken over the temperature range 0-1000°C.
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3.3 Debye Theory

The next advance in the theory of specific heat began with the suggestion of Madelung and Sutherland that
the Einstein frequency is equivalent not only to the infrared absorption frequency of the crystal but also to
the frequency of the shortest lattice vibration which can propagate through crystal. This wave has a wave-
length of about twice the interatomic distance. Since waves of longer wavelength can also propagate
through the crystal, Madelung made the further suggestion that a whole spectrum of frequencies should be
used in computing C, rather than just the single frequency @

Debye made two assumptions: (7} that the solid is a continuous medium and (ii), that the total number
of waves is equal 3N, where N is the number of atoms in the crystal. This assumption implies that the solid
is not really continuous after all and that the shortest permissible wavelengths are those of about two
interatomic distances. The restriction is expressed mathematically as

fﬂp[a)) dw = 3N (7)
1]
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where p(@) de is the number of waves (or modes) with frequencies between @ and @+ dw is solid. The
energy associated with each of these waves is that of a Planck oscillator, so that one obtains for the total
energy, E,

= plw) hodo
E=] /KT ®)
o & —1
p(@) is computed in a manner analogous to that employed in black body radiation, resulting in
vV (1 2 2
plo) - S+ o ©)
=i

where v, is the velocity of longitudinal sound waves, v, that of transverse waves and V the volume of the
solid.

The Debye frequency @p, is the maximum allowable frequency. Thus for @ > @y, p(@) is zero and the
value of integral in Eq. (7) above this limiting frequency is zero. This allows the upper limit in Eq. (8) to
be replaced by @, It is customary to replace the Debye frequency @y, by the Debye characterisitc tempera-
ture #p, defined by the relation

kE?D = th (10)
Finally Debye obtained the expression for specific heat as
TV e x!
C,= 9R dx (11)
fp ) o (e -1)?

with x = h@/kgT. As Tapproaches infinity, i.e. for x5 << 1, C, = 3R. We thus obtain the Debye classical
7 law results. At low temperatures for T'<< &, the upper limit goes to infinity. Then the integral in Eq.

(11) is equal to 47%/15. Hence

12 7 TY

BT
Thus C, varies as T2 as observed experimentally. Figure 13.3 10
shows a plot of C /3R versus 78 as given by the Debye
theory. The experimental results for many materials fit a single
curve.

The courses of the two curves shown in Figs. 13.1 and 13.3
are quite similar for 7 above about 0.2 &, The critical test
distinguishing between two theroies must therefore be made at
temperatures below about 0.1 &, where the Debye 7° should
hold. This 7® law failed for metals. The reason for this failure
is now understood, for Sommerfeld’s theory of metals shows
that the conduction electrons can make an important contribu- 0 :
tion to the heat capacity. 0 0.5 6, —>
According to Sommerfeld, there must be a linear term in the

temperature in the expression for C, in order to account for the
electron contribution. Thus, we obtain

(12::“ R] )
Co= 1T+ | — [99] (13)

The coefficient yin the electron term is sometimes called the Sommerfeld gamma. To analyse low tempera-
ture C, data for metals, C/T versus T° is plotted. According to Eq. (13) this should give a straight line of
slope 127* R/5@} and of intercept y on the C /T axis.

CJ3R —>

Fig. 13.3 Debye specific heat curve
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16. THERMOELECTRICITY

This implies direct conversion of heat into electricity. If an electric circuit is made by connecting two
dissimilar metals and the junctions of the two metals are kept at different temperatures, a current flows in
the circuit in a direction depending on the temperature difference be-

tween the two junctions and the nature of metals. This effect Is known Copper

as Seeback effect after the name of the discoverer, Seeback. The electric G

current is called the thermoelectric current and is the result of an e.m.f. | 10{4 %{:—I d
in the circuit caused by the temperature difference between the junc- | nction [rén Junction

tions. This e.m.f. is termed as thermo e.m.f The circuit formed by the
two different metals whose junctions are at two different temperatures
is known as thermocouple (Fig. 5.18).

When the two junctions of a couple are T K and the temperature of one junction is raised by a differential
dT, causing a thermo E.MLF. dF in the circuit, the thermoelectric power of the two metals at temperature
T is defined by

Fig. 5.18 Thermocouple

p- 2 (29)
dr |y
The temperature of the hot junction at which the thermo e.m.f. or the thermoelectric current attain ] Q()
maximum is called the neutral temperature ¢, for the given couple. The temperature of the hot junc.
where the thermo e.m.f. or the current is zero and changes direction, is termed as the inversion temperature
t, The inversion temperature is as much above the neutral temperature as the cold junction is below it
.+

t, = . (30)
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174 Material Science

where ¢.is the temperature of the cold junction. The variation of the
thermo e.m.f. with the temperature of the hot junction is shown in Fig.
5.19. The nature of the curve is the same for any pair of metals in the
Seeback series (Bi, Ni, Co, Pd, Pt, U, Cu, Mn, Ti, Hg, Pb, Sn, Cr, Mo,
Rh, Ir, Au, Ag, Zn, W, Cd, Fe, As, Sb, Te); the numerical values will
however will be different for different couples. In most of the cases, the
curve of Fig. 5.19 represent a parabola to a first approximation.

17. ORIGIN OF THE THERMOELECTRIC EFFECT

One can explain the origin of the thermoelectric effect with the help of
the free electron theory. A conductor possesses a large number of free
electrons, the concentration of which is different for different metals.
When the wires of two different metals are placed in contact with each
other, the electrons diffuse one metallic wire to another metallic wire
because of the concentration difference (i.e. gradient). As a result of
this, one of the metallic wire becomes positively charged and the other

Thermo e.m.f. (Volt)

¥ 190
0 l, \

Hot-junction temperature (*C)

Fig. 5.19 Variation of the
thermo e.m.f. with
the temperature of
the hot junction

negatively charged. This results in a setting up of a potential difference across the contact. This is termed
as contact potential. We must note that the contact potential is strongly affected by the temperature. When
one of the junctions of the thermocouple is heated (keeping the other junction cold), the potential difference
set up at the hot junction is comparatively more than that of the cold junction. As a result of this, a net e.m.f.
is produced in the thermocouple and called as thermo e.m.f. The thermo e.m.f. is the cause of thermoelectric

current.
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